The weight of the specimen in SSD condition is 373.3 cc
<u>Explanation</u>:
a) Apparent specific gravity = 
Where,
A = mass of oven dried test sample in air = 1034 g
B = saturated surface test sample in air = 1048.9 g
C = apparent mass of saturated test sample in water = 975.6 g
apparent specific gravity =
= 
Apparent specific gravity = 2.88
b) Bulk specific gravity 

= 2.76
c) Bulk specific gravity (SSD):


= 2.80
d) Absorption% :


Absorption = 1.44 %
e) Bulk Volume :


= 
Answer:
Time period = 41654.08 s
Explanation:
Given data:
Internal volume is 210 m^3
Rate of air infiltration 
length of cracks 62 m
air density = 1.186 kg/m^3
Total rate of air infiltration 
total volume of air infiltration
Time period 
Answer:
Check the explanation
Explanation:
Code
.ORIG x4000
;load index
LD R1, IND
;increment R1
ADD R1, R1, #1
;store it in ind
ST R1, IND
;Loop to fill the remaining array
TEST LD R1, IND
;load 10
LD R2, NUM
;find tw0\'s complement
NOT R2, R2
ADD R2, R2, #1
;(IND-NUM)
ADD R1, R1, R2
;check (IND-NUM)>=0
BRzp GETELEM
;Get array base
LEA R0, ARRAY
;load index
LD R1, IND
;increment index
ADD R0, R0, R1
;store value in array
STR R1, R0,#0
;increment part
INCR
;Increment index
ADD R1, R1, #1
;store it in index
ST R1, IND
;go to test
BR TEST
;get the 6 in R2
;load base address
GETELEM LEA R0, ARRAY
;Set R1=0
AND R1, R1,#0
;Add R1 with 6
ADD R1, R1, #6
;Get the address
ADD R0, R0, R1
;Load the 6th element into R2
LDR R2, R0,#0
;Display array contents
PRINT
;set R1 = 0
AND R1, R1, #0
;Loop
;Get index
TOP ST R1, IND
;Load num
LD R3,NUM
;Find 2\'s complement
NOT R3, R3
ADD R3, R3,#1
;Find (IND-NUM)
ADD R1, R1,R3
;repeat until (IND-NUM)>=0
BRzp DONE
;load array address
LEA R0, ARRAY
;load index
LD R1, IND
;find address
ADD R3, R0, R1
;load value
LDR R1, R3,#0
;load 0x0030
LD R3, HEX
;convert value to hexadecimal
ADD R0, R1, R3
;display number
OUT
;GEt index
LD R1, IND
;increment index
ADD R1, R1, #1
;go to top
BR TOP
;stop
DONE HALT
;declaring variables
;set limit
NUM .FILL 10
;create array
ARRAY .BLKW 10 #0
;variable for index
IND .FILL 0
;hexadecimal value
HEX .FILL x0030
;stop
.END
The back-work ratio much higher in the Brayton cycle than in the Rankine cycle because a gas cycle is the Brayton cycle, while a steam cycle is the Rankine cycle. Particularly, the creation of water droplets will be a constraint on the steam turbine's efficiency. Since gas has a bigger specific volume than steam, the compressor will have to work harder while using gas.
<h3>What are modern Brayton engines?</h3>
Even originally Brayton exclusively produced piston engines, modern Brayton engines are virtually invariably of the turbine variety. Brayton engines are also gas turbines.
<h3>What is the ranking cycle?</h3>
A gas cycle is the Brayton cycle, while the Ranking cycle is a steam cycle. The production of water droplets will especially decrease the steam turbine's performance. Gas-powered compressors will have to do more work since gas's specific volume is greater than steam's.
Th
To know more about Rankine cycle, visit: brainly.com/question/13040242
#SPJ4
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s