Ionic bonding is the bonding between a positive metal with a negative nonmetal (metals are always positive while non metals are opposite). The meeting of a metal with a non metal creates an ionic bond.
Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:



Displacement s = (u+v)*t/2 (t refers to delta time)
= (0.45 + 2.7)*6/2
= 3.15*3
= 9.45 m
Answer:
9] V = D ÷ T
Take any distance value from the graph and its relevant time.
V = 4 ÷ 2
V = 2 m/s
[You will notice that any distance values with its time will give you 2 m/s as its speed. This means that speed is constant throughout.]
10] Take the distance value and its time for the highest peak of B.
V = 20 ÷ 2
V = 10 m/s