We have that the speed of a body covering a distance of 320 km in 4h is mathematically given as
V=22.22m/s is
<h3 /><h3>
Speed</h3>
From the question we are told
calculate the speed of a body covering a distance of 320 km in 4h
Generally the equation for the Speed is mathematically given as

V=22.22m/s
Hence
The speed of a body covering a distance of 320 km in 4h is
V=22.22m/s
For more information on Speed visit
brainly.com/question/7359669
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
Off the top of my head, I only know 9 and 11, so I'll answer those two.
9) A heterotroph is an organism that relies on other organisms for food/energy
An autotroph can produce its own food from inorganic compounds (light)
11) Vascular plants have specialized tubes for transporting nutrients
Nonvascular plants do not have such tubes and are simpler
Answer:

Explanation:
The electrostatic attraction between the nucleus and the electron is given by:
(1)
where
k is the Coulomb's constant
Ze is the charge of the nucleus
e is the charge of the electron
r is the distance between the electron and the nucleus
This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:
(2)
where
m is the mass of the electron
v is the speed of the electron
Combining the two equations (1) and (2), we find

And solving for v, we find an expression for the speed of the electron:

Slightly raising your body temperature while increase oxygen and blood circulation throughout your body