Inclined planes reduce the amount of effort needed to move an object, but increases the length of the ramp.
<u>Explanation:</u>
Mechanical advantage is the measure of amount of effort needed to move an object. The mechanical advantage can be calculated as the ratio of length of ramp to the height of ramp for an inclined plane.
As it is known that an object can be easily moved on an inclined plane than on a vertical plane, this is because, the inclined plane provides greater output force. But in that case, the effort required will be reduced with the cost of increasing the distance of the movement of object.
In other terms , the ramp's length of inclined planes has to get increased in order to reduce the amount of effort needed to move an object. This is because as the mechanical advantage has length of the ramp in the numerator, with the increase in numerator value or length value the mechanical advantage will also increase.
ΔG° at 450. K is -198.86kJ/mol
The following is the relationship between ΔG°, ΔH, and ΔS°:
ΔH-T ΔS = ΔG
where ΔG represents the common Gibbs free energy.
the enthalpy change, ΔH
The temperature in kelvin is T.
Entropy change is ΔS.
ΔG° = -206 kJ/mol
ΔH° equals -220 kJ/mol
T = 298 K
Using the formula, we obtain:
-220kJ/mol -T ΔS° = -206kJ/mol
220 kJ/mol +206 kJ/mol =T ΔS°.
-T ΔS = 14 kJ/mol
for ΔS-14/298
ΔS=0.047 kJ/mol.K
450K for the temperature Completing a formula with values
ΔG° = (450K)(-0.047kJ/mol)-220kJ/mol
ΔG° = -220 kJ/mol + 21.14 kJ/mol.
ΔG°=198.86 kJ/mol
Learn more about ΔG° here:
brainly.com/question/17214066
#SPJ4
Answer:
D. Propanol
Explanation:
C3H7OH the presence of alcohol functional group makes it propanol
Answer:
MARK AS BRAINLIEST
Explanation:
Boron trifluoride only has six valence electrons and is one of the relatively rare second period covalent molecules that disobeys the octet rule. There are three bonded groups and so no lone pairs. Six electrons implies three electron pairs and therefore a trigonal geometry.
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. We calculate as follows:
Average atomic mass = .374 ( 184.953 amu ) + .626 ( <span>186.958 amu ) = 186.208 amu
Hope this answers the question. Have a nice day.</span>