The given question is incomplete. The complete question is:
Calculate the number of moles and the mass of the solute in each of the following solution: 100.0 mL of 3.8 × 10−5 M NaCN, the minimum lethal concentration of sodium cyanide in blood serum
Answer: The number of moles and the mass of the solute are
and
respectively
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml


n = moles of
= 


Thus the number of moles and the mass of the solute are
and
respectively
Answer:
1.
Explanation:
Let's start with the hydrogen. If we have 4 grams of hydrogen, it would be enough for 4 * 9 = 36 grams of water. Well, that can't be possible ...
4 votes
The the poles because that where the lines start
The hypothesis would be that more green bugs would be found than bright red bugs because the green bugs are more camouflaged asunder the green plants than the bright red bugs.
One mole of copper equals 6.02 × 10^23 atoms. The answer is letter C. This follows the
Avogaro’s law wherein 1 mole of a substance is equal to 6.02 x 10^23 atoms,
formula units or molecules. This is applicable to all substances.