Answer:
chlorophyll
Explanation:
Plants are green because their cells contain chloroplast which have pigment which absorb deep-blue and red light so that the rest of the sunlight spectrum is being reflected, causing the plants to look green.
Answer:
The correct answer is 25 mL graduated cylinder (it should be used in all the cases)
Explanation:
In order to measure 25.00 ml sample of a solution it should be used a 25 mL graduated cylinder, as it is previously and properly calibrated. The other laboratory glassware, beaker and erlenmeyer, have graduations which are approximate, so they are used when exact volumes are not needed.
ii) graduated cylinder has the least uncertainly. It is more accurate than a beaker or erlenmeyer (to within 1%)
iii) A 25 mL graduated cylinder should be used because it is the most accurate lab glassware (between those were mentioned: beaker, erlenmeyer).
Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
For example, ionic compounds, which are very polar, are often soluble in the polar solvent water. Nonpolar substances are likely to dissolve in nonpolar solvents. For example, nonpolar molecular substances are likely to dissolve in hexane, a common nonpolar solvent.