I think it’s A because each unit is worth 3
Answer:
See explanation
Explanation:
A balanced chemical reaction equation has the same number of atoms of each element on both sides of the reaction equation.
Hence, for the reaction between KOH and H2SO4, the balanced chemical reaction equation is;
H2SO4(aq) + 2KOH(aq) ---------> K2SO4(aq) + 2H2O(l)
Complete ionic equation;
2H^+(aq) + SO4^2-(aq) + 2K^+(aq) +2OH^-(aq) -------> SO4^2-(aq) + 2K^+(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq) -------> 2H2O(l)
Basically when frozen water/ice crystals high in the atmosphere collect water vapor molecules they grow. They are sometimes supplied by microscopic cloud droplets.
Answer:
The answer is
<h2>155 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of bromine = 50 mL
density = 3.10 g/cm³
It's mass is
mass = 50 × 3.10
We have the final answer as
<h3>155 g</h3>
Hope this<u> </u>helps you
Rates can be calculated with Arrhenius equation k = Axe^(-Ea/RT)
a. temperature affects the rate - imagine you are making coffee, so coffee crystals are boiled faster on higher temperature. Simplified but makes sense.
b. Ea is activation energy. Imagine, while preparing coffee, some of ingredients change to a different one, so there is a A -> B reaction (simplified). Now, Ea is energy barrier that stands on the arrow of this reaction, preventing A to transform to B. If Ea is small, reaction will go easy (not fast!), if Ea is large –reaction will not happen so easy (you ll have to use catalyst for example)