Discrete systems are those systems in which are made up of finite component particles a which are non-homogeneously arranged such that no smooth variation exists. It is such that all constituent particles have properties which vary randomly. They are direct opposite to continuous systems, which are smooth arrangement of particles which cannot be individually taken into consideration.
Was this answer helpful
The best and most correct answer among the choices provided by your question is the second choice or letter C. A solar-powered car converts light energy to mechanical energy.
Solar cars use photovoltaic cells to convert sunlight into energy. Photovoltaic cells are the components in solar panels that convert the sun's energy to electricity<span>. They're made up of semiconductors, usually silicon, that absorb the light.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
The Traits an organism displays are ultimately determined by the genes it inherited from its parents, in other words by its genotype. Variant copies of a gene are called alleles, and an individuals genotype is the sum of all the alleles inherited from the parents.
Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
B.) Compressions
HOPPE IT HELPED