The area-
The area under the line in a velocity-time graph represents the distance travelled. To find the distance travelled in the graph above, we need to find the area of the light-blue triangle and the dark-blue rectangle.
<span><span>Area of light-blue triangle -
<span>The width of the triangle is 4 seconds and the height is 8 meters per second. To find the area, you use the equation: <span>area of triangle = 1⁄2 × base × height </span><span>so the area of the light-blue triangle is 1⁄2 × 8 × 4 = 16m. </span></span></span><span> Area of dark-blue rectangle
The width of the rectangle is 6 seconds and the height is 8 meters per second. So the area is 8 × 6 = 48m.</span><span> Area under the whole graph
<span>The area of the light-blue triangle plus the area of the dark-blue rectangle is:16 + 48 = 64m.<span>This is the total area under the distance-time graph. This area represents the distance covered.</span></span></span></span>
Answer:
When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and viewer. Unlike other forms of social video, you’ll get more views and engagement if your video
is longer and repeats key points.
Explanation:
When broadcasting live on social media, one should be live for long because in this way one can get more views as audience will increase with time. There should be an interaction with the audience like answering their questions which they write in the comments section. These comments and views will make this video to the top of news feed. Secondly the most important thing is the content of the video. One must focus on the information or knowledge he/she wants to convey and must repeat the key points again and again so that one who has missed the important points will be able catch them later.
Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.
Current = charge/time = (2 c)/(0.00024 sec)= 8,333 Amps !
Answer:
The answer to the question is
Its maximum speed is 1.54 m/s
Explanation:
Work done = Kinetic energy
0.5·m·v² = 0.5·k·x²
Where
m = mass
v = velocity
k = spring constant
x = extension of the spring
We note that Force F is given by
F = m·a
Where
a = acceleration due to gravity
= 0.153×9.8 = 1.4994 N
Equating the work done by the force to the work done on the spring gives
Work done = Force × Distance = 1.4994×x = 0.5×k÷x² = 0.5×24.7×x²
x = 1.4994÷12.35 = 0.121 m
Substituting the value of x into the equation below gives
0.5·m·v² = 0.5·k·x²
0.5×0.153×v² = 12.35×0.121²
v² = 0.182÷0.0765 = 2.379
v = 1.54 m/s