It is the heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).
Answer:
the heat absorbed by the block of copper is 74368.476J
Explanation:
Hello!
To solve this problem use the first law of thermodynamics that states that the heat applied to a system is the difference between the initial and final energy considering that the mass and the specific heat do not change so we can infer the following equation
Q=mCp(T2-T1)
Where
Q=heat
m=mass=2.3kg
Cp=0.092 kcal/(kg C)=384.93J/kgK
T2=Final temperatura= 90C
T1= initial temperature=6 C
solving

the heat absorbed by the block of copper is 74368.476J
I believe that the correct answer you are looking for is the distance traveled
Answer:
-100N
Explanation:
Newton's third law of motion states that to every force exerted on one body, there is an equal and opposite force. This means that if object A exerts an ACTION force on B, there is a force called REACTION FORCE, which is equal and opposite, exerted on A by B.
The action and reaction forces are equal in size/magnitude but opposite in direction. In this case where a tennis racket strikes a tennis ball with a force (action force) of 100N, the ball will strike the racket with a reaction force of -100N.
F(RB) = -F(BR)