Answer:
Explanation:
pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10^−pH,
so PH =2.4 in you case is
[H+] = 10^-2.4 =0.00398
The option are not correct it looks
Answer:
4. -ol
5. cyclic ketone
Explanation:
biology stuff
sorry it's hard to explain
I am not sure but this is what I think
This question uses the formula connecting mass, density and volume
Which is Density= Mass/Volume
Convert the mass in g
92.5 kg = 92,500g
7.87g/ml = 92,500/ Volume
Volume= 92,500/7.87
= 11,753.5 ml
Now since we have to give the answer in liters we can just divide by 1000 and get
11.75 litres
The questions tha science can answer are those can be tested to try to find a definite answer.
For example, whether light is wave or particle is matter of science.
Questions that cannot have a definite answer are the field of religion or philosophy, and are out of the boundaries of science.
For example, does a criminal deserve the punishment of not seeing light? It is a moral question, which to be responded needs the intervention of philosophy and that could have different anwers at different times and in different societies.
Answer:
71.372 g or 0.7 moles
Explanation:
We are given;
- Moles of Aluminium is 1.40 mol
- Moles of Oxygen 1.35 mol
We are required to determine the theoretical yield of Aluminium oxide
The equation for the reaction between Aluminium and Oxygen is given by;
4Al(s) + 3O₂(g) → 2Al₂O₃(s)
From the equation 4 moles Al reacts with 3 moles of oxygen to yield 2 moles of Aluminium oxide.
Therefore;
1.4 moles of Al will require 1.05 moles (1.4 × 3/4) of oxygen
1.35 moles of Oxygen will require 1.8 moles (1.35 × 4/3) of Aluminium
Therefore, Aluminium is the rate limiting reagent in the reaction while Oxygen is the excess reactant.
4 moles of aluminium reacts to generate 2 moles aluminium oxide.
Therefore;
Mole ratio Al : Al₂O₃ is 4 : 2
Thus;
Moles of Al₂O₃ = Moles of Al × 0.5
= 1.4 moles × 0.5
= 0.7 moles
But; 1 mole of Al₂O₃ = 101.96 g/mol
Thus;
Theoretical mass of Al₂O₃ = 0.7 moles × 101.96 g/mol
= 71.372 g