Answer:
Mechanical advantage = 15
Explanation:
Given the following data;
Output force = 3000N
Input force = 200N
To find the mechanical advantage;
Mechanical advantage = output force/input force
Substituting into the equation, we have
Mechanical advantage = 3000/200
Mechanical advantage = 15
B
V= f x lambda
V= 5m/s
F = 10hz
Lambda = ?
5 = 10 x lamba
5 /10 = lambda
Wavelength =0.5
We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
Answer:
Net force exerted on the radio is 27.5 Newton.
Given:
Mass = 5.5 kg
Acceleration = 5 
To find:
Force exerted on the radio = ?
Formula used:
F = ma
Where F = net force
m = mass
a = acceleration
Solution:
According to Newton's second law of motion,
F = ma
Where F = net force
m = mass
a = acceleration
F = 5.5 × 5
F = 27.5 Newton
Hence, Net force exerted on the radio is 27.5 Newton.