Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have

here we know that

now here we have

so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
Answer:
7.9
Explanation:
When we put the metal piece in the liquid (which is in the graduated cylinder), how much it goes up is equal to the volume of the piece we inserted.
So now we know that the volume of that piece of unknown metal is 7mL (which is the same as 7
).
Density is
.
So the density of that piece of metal is 
Which leaves us with a final density of 7.9
Based on internet sources, <span>the basic formulas are: v^2/r = (at)^2/r = a ==> at^2 = r ==> t = sqrt(r/a).
</span>
<span>Assuming the missing units are mutually compatible, as in the following example, they don't need to be known. </span>
<span>Acceleration = 1.6 cramwells/s^2 </span>
<span>Radius = 150 cramwells </span>
<span>t = sqrt(150/1.6) = 9.68 s.
I hope this helps.</span>
117 m/sec is the speed of a transverse wave in a rope of length 3. 1 m and mass 86 g under a tension of 380 n.
The wave speed v is given by
v= √τ/μ
where τ is the tension in the rope and μ is the linear mass density of the rope.
The linear mass density is the mass per unit length of rope :
μ= m / L = (0.086 kg)/(3.1 m)=0.0277 kg/m.
v=
= 117.125 m/sec (approx. 117 m/sec
In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations. Water waves are an example of transverse wave.
Transverse waves commonly occur in elastic solids due to the shear stress generated; the oscillations in this case are the displacement of the solid particles away from their relaxed position, in directions perpendicular to the propagation of the wave. These displacements correspond to a local shear deformation of the material. Hence a transverse wave of this nature is called a shear wave. Since fluids cannot resist shear forces while at rest, propagation of transverse waves inside the bulk of fluids is not possible.
Learn more about Transverse waves here : brainly.com/question/13761336
#SPJ4
Answer: When fire stopping material is used where more than 2 non-metallic sheathed cables pass through wood framing members, their ampacities must be adjusted, according to 310.15"
Answer is 2