Please list your question in the comments.
You HAVE TO know that molarity (M) tells you the number of moles of a solute per Liters of solution.
M=mol/L
0.3M = 2.7 mol/ Volume
Volume = 2.7 mol/3.0 L
Volume = 0.9 L
<span>The equation you used is KE=hv-hv0, where h=6.63*10^-34 (constant). You multiply h by 1.5*10^15. Multiply h by the threshold freq of cesium (from part A). Subtract the second answer from the first answer, and you get the kinetic energy. Hope this helps.</span>
Answer:
1. 0.02 M
2. 0.01 M
3. 4×10⁻⁶
Explanation:
We know that V₁S₁ = V₂S₂
1.
Concentration of HCl = 0.05 M
end point comes at = 10 ml
So, concentration of OH⁻(aq) = [OH⁻(aq)] ⇒ (0.05 × 10) ÷ 25 ⇒ 0.02 M
2.
2mol of OH⁻(aq) ≡ 1 mole of Ca²⁺(aq)
[Ca²⁺] = 0.02 ÷ 2 = 0.01 M
3.
= [Ca²⁺(aq)] [OH⁻(aq)]²
Ca(OH)₂ (aq) ⇄ Ca²⁺ (aq) + 2OH⁻ (aq)
= [0.01 × (0.02)²] = 4×10⁻⁶
4.
If reaction is exothermic which means heat energy will get evolved as a result temperature of the reaction media will get increased during the course of the reaction. If temperature is externally increased, the reaction will go backward to accumulate extra heat energy.
5.
value describes the solubility of a particular ionic compound. The higher the
value, the higher the Solubility will be.
6.
This may be due to uncommon ion effect. The process of other ions (K⁺ or Na⁺) may increase the solubility
Answer:
CuBr₂(aq) + Pb(CH₃COO)₂(aq) → Cu(CH₃COO)₂(aq) + PbBr₂ (s)↓
Explanation:
We identify the reactants:
CuBr₂ and Pb(CH₃COO)₂
The products will be: Cu(CH₃COO)₂ and PbBr₂
You may know these information:
Salts from acetate are soluble.
Bromide can make solid salts with these cations: Ag⁺, Pb²⁺, Hg₂²⁺, Cu⁺
PbBr₂ is formed, so this will be our precipitate
The equation is:
CuBr₂(aq) + Pb(CH₃COO)₂(aq) → Cu(CH₃COO)₂(aq) + PbBr₂ (s)↓