Dalton's law of partial pressures states that the total pressure of a mixture of gases is the sum of the partial pressures of its components:
\text {P}_{\text{Total}} = \text P_{\text {gas 1}} + \text P_{\text {gas 2}} + \text P_{\text {gas 3}} ...P
Total
=P
gas 1
+P
gas 2
+P
gas 3
...
If you're asking about vapor its a solid
Answer:
B. Salt, NaCl, is produced by the process of evaporation of seawater or brine. If the surface area of the water is increased, the same volume of water evaporates faster.
C. The Haber process combines hydrogen and nitrogen to make ammonia. The two gases are passed through a reactor under pressure and at high temperatures. If iron is added to the reactor, the yield of ammonia increases.
Explanation:
Evaporation of water is responsible for the production of sodium chloride also known as table salt. Sodium and chlorine are present in water. When more evaporation of water occurs, sodium and chlorine come close together forming sodium chloride. Haber process is responsible for the production of ammonia which is used as fertilizer. For speed up the process, catalyst is used such as iron in order to complete the reaction in less time. Iron binds hydrogen and nitrogen with each other.
<h2>
Question
</h2>
A sample of methane collected when the temp was 30 C and 760mmHg measures 398 mL. What would be the volume of the sample at -5 C and 616 mmHg pressure
<h2>
Answer:</h2>
434.32mL
<h2>
Explanation:</h2>
Using the combined gas law:
= k
Where;
P = Pressure
V = Volume
T = Temperature
k = constant.
It can be deduced that:
=
= k ---------------------(i)
Where:
P₁ and P₂ are the initial and final pressures of the given gas
V₁ and V₂ are the initial and final volumes of the given gas
T₁ and T₂ are the initial and final temperatures of the gas.
<em>From the question:</em>
the gas is methane
P₁ = 760mmHg
P₂ = 616mmHg
V₁ = 398mL
V₂ = ?
T₁ = 30°C = (30 +273)K = 303K
T₂ = -5°C = (-5 +273)K = 268K
Substitute these values into equation (i) as follows;
= 
Solve for V₂
V₂ = 
V₂ = 434.32mL
Therefore, the volume of the sample at -5C and 616mmHg pressure is 434.32mL