1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
12

Conduction is the transfer of electrons from a charged object to another object by rubbing. Please select the best answer from t

he choices provided
a. True
b. False
Physics
1 answer:
Valentin [98]3 years ago
7 0
The answer to this question is false
You might be interested in
Hooke’s law states that the distance that a spring is stretched by hanging object varies directly as the mass of the object. If
trasher [3.6K]

Answer:

d_{2} = 33.33 cm

Explanation:

Given:

When mass, m_{1} =21 kg

          distance travelled is  d_{1}  = 140 cm

When mass, m_{2} =5 kg

         distance travelled is  d_{2}  = ?

Hooke's law state that within elastic limit, when an external force is applied to a body, the body gets deformed and when the force is released the gets back to its original form.

Therefore according to the question,

\frac{d_{1}}{m_{1}}=\frac{d_{2}}{m_{2}}

\frac{140}{21}=\frac{d_{2}}{5}

d_{2} = 33.33 cm

Distance travelled is 33.33 cm when mass is 5 kg.

8 0
3 years ago
A projectile is fired from the ground (you can assume the initial height is the same as the ground) in a field so there are no o
Cerrena [4.2K]

Answer:

A) 112 m. B) 27.2 m C) 41.1 m/s i + 13.4 m/s j  D) 43.2 m/s

Explanation:

A) Once fired, no external forces act on the projectile in the x-direction, so it keeps moving to the right at constant speed, which is the projection on the x-axis of  the initial velocity vector:

v₀ₓ = v₀* cos 33º = 49 m/s* cos 33º = 41.1 m/s

In the y-direction, the component of the velocity can be found as the projection of v₀ on the y-axis, as follows:

v₀y = v₀* sin 33º = 49 m/s* sin 33º = 26.7 m/s

Both velocities are independent each other, as no one has a projection on the other.

In the vertical direction, the  projectile is in free fall all time, under the influence of gravity , which accelerates it downward.

So, at any time, in the vertical direction, the velocity can be calculated as follows:

vfy = v₀y -g*t (same equation as for an object thrown upwards)

When the object is at its maximum height, the velocity, in the vertical direction, will be momentarily zero, so we can find the time when this happens as follows:

vfy= 0 ⇒ v₀y = g*t ⇒ t = v₀y / g = 26.7 m/s / 9.8 m/s² = 2.72 s

As the time is the same for both movements, we can replace this value in the expression for the displacement x at constant speed, as follows:

x = v₀ₓ* t = 41.1 m/s* 2.72 s = 112 m

B) Like above, as the time is the same for both movements, we can find the time for the instant that the projectile hit the wall, as follows:

x = v₀ₓ* t ⇒ 55. 8 m = 41.1 m/s * t

⇒ t = 55. 8 m / 41.1 m/s = 1.36 s

We can replace this value of t in the equation for the vertical displacement, as follows:

Δy = v₀y*t -1/2*g*t² = (26.7m/s*1.36s) - 1/2*9.8m/s²*(1.36s)² = 27.2 m

C) The velocity of the projectile, at any time, has two components, one horizontal and one vertical.

As explained above, x-component is constant, equal to v₀x:

vx = v₀x i = 41.1 m/s i

For vy, we can apply acceleration definition, using the value of v₀y and t that we have just found:

vfy = voy - g*t = 26.7 m/s - 9.8m/s*1.36 sec = 13.4 m/s

vfy = 13.4 m/s j

v = 41.1 m/s i + 13.4 m/s j

D) Finally, in order to get the speed of the projectile when it hit the wall, we need just to find the magnitude of the velocity, as we get the magnitude of any vector given its vertical and horizontal components:

v = √(41.1 m/s)² +(13.4 m/s)² =43.2 m/s

5 0
3 years ago
How do you calculate speed
Kryger [21]

Answer:

distance(d)=.....

time(t)=....

speed =?

we know that

speed =distance /time

8 0
3 years ago
Read 2 more answers
A horse canters away from its trainer in a straight line, moving 37 m away in 9.1 s. It then turns abruptly and gallops halfway
vesna_86 [32]

Answer:

Average velocity = 1.69 m/s

Average speed = 5.09 m/s

Explanation:

Given that

Horse cover 37 m in 9.1 sec and 18.5 m in 1.8 sec.

As we know that

Average velocity = Displacement / Total time

Average speed  = Total distance / Total time

Average velocity:

  Average velocity = Displacement / Total time

Total displacement = 37 - 18.5 = 18.5 m

Total time = 9.1 + 1.8 =10.9 s

Average velocity = Displacement / Total time

Average velocity = 18.5 / 10.9

Average velocity = 1.69 m/s

Average speed:

  Average speed = Total distance/ Total time

Total distance = 37 + 18.5 = 55.5 m

Total time = 9.1 + 1.8 =10.9 s

Average speed = Total distance/ Total time

Average speed = 55.5 / 10.9

Average speed = 5.09 m/s

3 0
3 years ago
A fighter plane flying at constant speed 420 m/s and constant altitude 3300 m makes a turn of curvature radius 11000 m. On the g
Arada [10]

Answer:

"Apparent weight during the "plan's turn" is  519.4 N

Explanation:

The "plane’s altitude" is not so important, but the fact that it is constant tells us that the plane moves in a "horizontal plane" and its "normal acceleration" is \mathrm{a}_{\mathrm{n}}=\frac{v^{2}}{R}

Given that,

v = 420 m/s

R = 11000 m

Substitute the values in the above equation,

a_{n}=\frac{420^{2}}{11000}

a_{n}=\frac{176400}{11000}

a_{n}=16.03 \mathrm{m} / \mathrm{s}^{2}

It has a horizontal direction. Furthermore, constant speed implies zero tangential acceleration, hence vector a = vector a N. The "apparent weight" of the pilot adds his "true weight" "m" "vector" "g" and the "inertial force""-m" vector a due to plane’s acceleration, vectorW_{\mathrm{app}}=m(\text { vector } g \text { -vector a })

In magnitude,

| \text { vector } g-\text { vector } a |=\sqrt{\left(g^{2}+a^{2}\right)}

| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{\left(9.8^{2}+16.03^{2}\right)}

| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{(96.04+256.96)}

| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{353}

| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=18.78 \mathrm{m} / \mathrm{s}^{2}

Because vector “a” is horizontal while vector g is vertical. Consequently, the pilot’s apparent weight is vector

\mathrm{W}_{\mathrm{app}}=(18.78 \mathrm{m} / \mathrm{s}^ 2)(53 \mathrm{kg})=995.77 \mathrm{N}

Which is quite heavier than his/her true weigh of 519.4 N

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which fundamental force has a small range and is always an attractive force?
    11·1 answer
  • What two things can happen in the life of a massive star after it passes from the supernova stage?
    13·1 answer
  • The volume of a gas is 200.0 mL at 275 K and 92.1 kPa. Find its volume at STP.
    5·1 answer
  • After pollination where does a seed grow in a flower?
    5·1 answer
  • Human eyes detect only a very small band of the electromagnetic spectrum. However, some animals and insects see in higher and lo
    14·1 answer
  • Explain how sociology will contribute to the understanding of daily life and what is happening within it?
    10·1 answer
  • Secondary evidence is the basis for drawing scientific conclusions. <br> a. True<br> b. False
    15·2 answers
  • What factors cause a rock to become metamorphic
    9·2 answers
  • HELP ASAPP!!!! WILL GIVE BRAINLIEST!<br> Describe the chemical structure of a cell membrane
    7·2 answers
  • A classic demonstration illustrating eddy currents is performed by dropping a permanent magnet inside a conducting cylinder. The
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!