Answer: 24.97 kg
Explanation:
The gravitational force between two objects of masses M1, and M2 respectively, and separated by a distance R, is:
F = G*(M1*M2)/R^2
Where G is the gravitational constant:
G = 6.67*10^-11 m^3/(kg*s^2)
In this case, we know that
R = 0.002m
F = 0.0104 N
and that M1 = M2 = M
And we want to find the value of M, then we can replace those values in the equation to get
0.0104 N = (6.67*10^-11 m^3/(kg*s^2))*(M*M)/(0.002m)^2
(0.0104 N)*(0.002m)^2/(6.67*10^-11 m^3/(kg*s^2)) = M^2
623.69 kg^2 = M^2
√(623.69 kg^2) = M = 24.97 kg
This means that the mass of each object is 24.97 kg
The gravitational forces between the Earth and Moon are greatest when the two bodies are closest together. That happens every 27.32 days, when the Moon is at the perigee of its orbit.
Even if this happened at the same time in every orbit, the date would change, because there are not 27.32 days in a month.
But it doesn't happen at the same time in every orbit ... the Moon's perigee precesses around its orbit, on account of the gravitational forces toward the Earth, the Sun, Venus, Mars, and the other planets.
Answer: The earth is comprised of silicate materials as well as metals. The amount of gas is less here because of its location near to the sun. Due to its relative high surface temperature, the gases such as hydrogen and helium gets evaporated and disappears.
Whereas the sun is entirely comprised of hydrogen and helium gas, of which hydrogen is the dominant one. It has an extremely high temperature of about 5500°C.
Answer:
Force = 3.204Newton
Explanation:
Given the following data;
Pressure = 178
Area = 18 mm² to meter = 18/1000 = 0.018 m²
To find the force;
Force = pressure * area
Force = 178 * 0.018
Force = 3.204 Newton.