Answer:
g = 11.2 m/s²
Explanation:
First, we will calculate the time period of the pendulum:

where,
T = Time period = ?
t = time taken = 135 s
n = no. of swings in given time = 98
Therefore,

T = 1.38 s
Now, we utilize the second formula for the time period of the simple pendulum, given as follows:

where,
l = length of pendulum = 54 cm = 0.54 m
g = acceleration due to gravity on the planet = ?
Therefore,

<u>g = 11.2 m/s²</u>
there are 3 atoms in each silver sulfide
Answer:

Explanation:
The attached figure shows the whole description. Considering the applied force is 100 N.
The acceleration of both blocks A and B, 
Firstly calculating the mass m using the second law of motion as :
F = ma
m is the mass


m = 125 kg
It suddenly encounters a surface that supplies 25.0 N a friction, F' = 25 N



So, the new acceleration of the block is
. Hence, this is the required solution.
Answer:
I would think the answer is color, if the wavelength is within the visible light spectrum. This could be answered in different ways but I'm pretty sure the answer you are looking for is hue/color.
Answer:
Newton's first law states that when the vector sum of all forces acting on an object (the net force) is zero, the object is in equilibrium. If the object is initially at rest, it remains at rest. If it is initially in motion, it continues to move with constant velocity.
Explanation: