Answer:

Explanation:
The equation of the position is:

Where:
v(i) is the initial velocity
The initial position y(i) will be zero and the final position y = 3.60 m.
So, we just need to solve this equation for v(i).



Therefore, the initial velocity is 10.10 m/s upwards.
I hope it helps you!
Answer:
c) True. If the coating cancels the light requested by the reflection, so there is more energy to enter the cell and therefore its efficiency increases
Explanation:
This exercise asks to analyze the effect of the antireflective coating on the efficiency of solar cells.
Let's start by expressing the expression for the interference of two light beams taken at when
* the phase change introduced when passing from air to 180º film
* the wavelength change by the refractive index of the film ln = lo / n
therefore the expression for destructive interference is
2 n t = m λ
where m is an integer
with these concepts we can analyze the different statements
a) False. Phase shift does not change the wavelength of light
b) False. The refractive index of the solar cell is not affected by the refractive index of the film since the two materials do not mix.
c) True. If the coating cancels the light requested by the reflection, so there is more energy to enter the cell and therefore its efficiency increases
d) false. In solar cells the incidence is almost normal, therefore the effect of refraction (separation of colors for different angles) is very small
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:
Explanation:
By definition we get that,
velocity = displacement change/ time taken
So for bird we can use,
velocity of the bird = displacement change/ time taken
= 8000/4 = 2000 miles per day =326.61 m/s
1. The plant breaks down into bits
2. A dead plant falles to the ground
3 The bits become part of soil