The best answer is
A) <span>The atoms in the mineral get rearranged
Over time, and under great pressure, the atoms of a substance can become rearranged, forming a new substance. For example, the intense pressure that carbon underground experiences, perhaps in the form of coal, can rearrange the atoms of the substance to create a diamond. </span>
<u>Answer:</u>
The final velocity of the two railroad cars is 1.09 m/s
<u>Explanation:</u>
Since we are given that the two cars lock together it shows that the collision is inelastic in nature. The final velocity due to inelastic collision is given by

where
V= Final velocity
M1= mass of the first object in kgs = 12000
M2= mas of the second object in kgs = 10000
V1= initial velocity of the first object in m/s = 2m/s
V2= initial velocity of the second object in m/s = 0 (given at rest)
Substituting the given values in the formula we get
V = 2×12000 + 0x100012000 + 10000= 2400022000= 1.09 m/s

Which is the final velocity of the two railroad cars
In one quadrant there are 90 degrees.
Explanation:
Given that,
Mass if the rock, m = 1 kg
It is suspended from the tip of a horizontal meter stick at the 0-cm mark so that the meter stick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark.
We need to find the mass of the meter stick. The force acting by the stone is
F = 1 × 9.8 = 9.8 N
Let W be the weight of the meter stick. If the net torque is zero on the stick then the stick does not move and it remains in equilibrium condition. So, taking torque about the pivot.

W = 3.266 N
The mass of the meters stick is :

So, the mass of the meter stick is 0.333 kg.
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,