Answer:
A- A demonstration shows how something works, often including models
Explanation:
A demonstration allows, through experimentation, to show how nature works and in that way can include the explanation of scientific theories that explain the set of observed facts, that is, it serves as a demonstration of the underlying scientific principles.
Answer:
W / A = 39200 kg / m²
Explanation:
For this problem let's use the equilibrium equation of / newton
F = W
Where F is the force of the door and W the weight of water
W = mg
We use the concept of density
ρ = m / V
m = ρ V
The volume of the water column is
V = A h
We replace
W = ρ A h g
On the other side the cylinder cover has a pressure
P = F / A
F = P A
We match the two equations
P A = ρ A h g
P = ρ g h
P = 39200 Pa
The weight of the water column is
W = 1000 9.8 4 A
W / A = 39200 kg / m²
Answer:
<em>The average speed of the train is 45 km/h</em>
Explanation:
<u>Speed</u>
It's defined as the distance (d) per unit of time (t) traveled by an object. The formula is:

Let's call x the total distance covered by the train. It covered d1=1/3x with a speed of v1=25 km/h. The time taken is calculated solving for t:



Now the rest of the distance:
d2 = x - 1/3x = 2/3x
Was covered at v2=75 km/h. Thus the time taken is:



The total time is:



Simplifying:

The average speed is the total distance divided by the total time:

Simplifying:

The average speed of the train is 45 km/h
Max preassure = force / min area
= 3N / 0.1 x 0.05
= 600N/m(squared)
Copy off of the picture below itll help better, its what someone sent me when i asked this question
The correct answer to the question is : 9375 N.
CALCULATION:
As per the question, the mass of the car m = 1500 Kg.
The diametre of the circular track D = 200 m.
Hence, the radius of the circular path R = 
= 
= 100 m.
The velocity of the truck v = 25 m/s.
When a body moves in a circular path, the body needs a centripetal force which helps the body stick to the orbit. It acts along the radius and towards the centre.
Hence, the force acting on the car is centripetal force.
The magnitude of the centripetal force is calculated as -
Force F = 
= 
= 9375 N. [ANS}
The centripetal force is provided to the car in two ways. It is the friction which provides the necessary centripetal force. Sometimes friction is not sufficient. At that time, the road is banked to some extent which provides the necessary centripetal force.