Answer:
21560 J
Explanation:
Work = mg*h = 1100*9.8*2 = 21560 J
Answer:
Thermal Power = 460W
Explanation:
From Stephan-Boltzmann Law Formula;
P = єσT⁴A
Where,
P = Radiation energy
σ = Stefan-Boltzmann Constant
T = absolute temperature in Kelvin
є = Emissivity of the material.
A=Area of the emitting body
Now, σ = 5.67 x 10^(-8)
є = 0.6
Temperature = 30°C and coverting to kelvin = 30 + 273 = 303K
Area ; since we are to consider the sides of the human body as 2m and 0.8m,thus area = 2 x 0.8 = 1.6
Thus thermal power = 0.6 x 5.67 x 10^(-8) x303⁴ x 1.6 = 458. 8W
Normally, we approximate to the nearest 10W. Thus, thermal power is approximately 460W
Answer:
The the quality of the refrigerant at the exit of the expansion valve is 0.179.
Explanation:
Given that,
Initial pressure = 10 bar
Temperature = 22°C
Final pressure = 2.0 bar
We using the value of h

The refrigerant during expansion undergoes a throttling process
Therefore, 
We need to calculate the quality of the refrigerant at the exit of the expansion valve
At 2.0 bar,
The property of ammonia


Using formula

Put the value into the formula



Hence, The the quality of the refrigerant at the exit of the expansion valve is 0.179.
The intensity of a sound wave is defined as the amount of energy passing through a unit area of the wave front in unit of time.
Answer:
Static energy
Explanation:
Think of it as a balloon rubbing against your hair, the two attractions of friction causes Static energy.