Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer:
H vaporization = 100.0788 kJ/mol
Explanation:
Use clausius clapyron's adaptation for the calculation of Hvap as:

Where,
P₂ and P₁ are the pressure at Temperature T₂ and T₁ respectively.
R is the gas constant.
T₂ = 823°C
T₁ = 633°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So, the temperature,
T₂ = (823 + 273.15) K = 1096.15 K
T₁ = (633 + 273.15) K = 906.15 K
P₂ = 400.0 torr , P₁ = 40.0 torr
R = 8.314 J/K.mol
Applying in the formula to calculate heat of vaporization as:

Solving for heat of vaporization, we get:
H vaporization = 100078.823 J/mol
Also, 1 J = 10⁻³ kJ
So,
<u>H vaporization = 100.0788 kJ/mol</u>
i think number 1 on the bottom is friction, i honestly am having trouble myself so i cannot really help
Answer:
6 light years = 57 million km
Explanation:
Given;
A light year = 9.5 million km
To calculate how far is 6 light years;
6 light years = 6 × 1 light year = 6 × 9.5 million km
6 light years = 57 million km
Answer:
Melting occurs when a solid is heated and turns into a liquid. The particles in a solid gain enough energy to overcome the bonding forces holding them firmly in place.
During the melting point, the particles start to move about, staying close to their neighboring particles, then move more freely.
Explanation:
As a substance melts and goes from a solid to a liquid state, the kinetic energy of the molecules increases and moves faster, and separates further away from each other. This is why a liquid can fill the shape of its container, where a soild has a fixed shape.