Answer:
Its A
Explanation:
Thats because federalists wanted to take away rights. But the fathers wanted to definitely ensure that each person had equal rights and liberty.
Answer:
2. You must be able to precisely measure variations in the star's brightness with time.
5. As seen from Earth, the planet's orbit must be seen nearly edge–on (in the plane of our line-of-sight).
6. You must repeatedly obtain spectra of the star that the planet orbits.
Explanation:
The transit method is a very important and effective tool for discovering new exoplanets (the planets orbiting other stars out of the solar system). In this method the stars are observed for a long duration. When the exoplanet will cross in front of theses stars as seen from Earth, the brightness of the star will dip. To observe this dip following conditions must be met:
1. The orbit of the planet should be co-planar with the plane of our line of sight. Then only its transition can be observed.
2. The brightness of the star must be observed precisely as the period of transit can be less than a second as seen from Earth. Also the dip in brightness depends on the size of the planet. If the planet is not that big the intensity dip will be very less.
3. The spectrum of the star needs to be studied and observe during the transit and normally to find out the details about the planets.
4. Also, the orbital period should be less than the period of observation for the transit to occur at least once.
Answer:
<h2>66.67 km/hr</h2>
Explanation:
The average velocity of the car can be found by using the formula

d is the distance
t is the time taken
From the question we have

We have the final answer as
<h3>66.67 km/hr</h3>
Hope this helps you
Answer:
The observer detects light of wavelength is 115 nm.
(b) is correct option
Explanation:
Given that,
Wavelength of source = 500 nm
Velocity = 0.90 c
We need to calculate the wavelength of observer
Using Doppler effect

Where, 


Hence, The observer detects light of wavelength is 115 nm.
<h2>Hello!</h2>
The answer is: B. Kinetic energy
<h2>
Why?</h2>
Since the ball is falling, speed increases because the gravity acceleration is acting. When speed increases, the kinetic energy increases too, so the ball is gaining kinetic energy.
The gravity acceleration is equal to
, it means that when falling, the ball will increase it's speed 9.81m every second.
We can calculate the kinetic energy by using the following formula:

Where:

Have a nice day!
<h2 />