1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weeeeeb [17]
3 years ago
13

You are an engineer helping to design a roller coaster that carries passengers down a steep track and around a vertical loop. Th

e coaster's speed must be great enough when at the top of the loop so that the rider stays in contact with the cart and the cart stays in contact with the track. Riders can withstand acceleration no more than a few "gg's", where one "gg" is 9.89.8 m/s2.What are some reasonable values for the physical quantities you can use in the design of the ride? For example, one consideration is the height at which the cart and rider should start so that they can safely make it around the loop and the radius of the loop.
Physics
2 answers:
Reptile [31]3 years ago
7 0

Answer:

Maximum height was designed to be 20m while minimum height was designed as 12m. Thus, the height should not be less than 12m otherwise, the cart will travel too slowly around the loop and will not remain in contact with the track.

Explanation:

I've attached a force diagram of the roller coaster layout at crest.

In the diagram ;

F_SonP = The force exerted by the seat on the person in the cart.

F_EonP = Force exerted by earth on person

Now, if we apply the component form of Newton's 2nd law of motion the vertical direction at crest position, and equate the net applied force to the centripetal force term due to circular motion about a radius(r), we obtain;

ΣF_onC = ma

Centripetal accelaration = v²/r

Thus,

So, N_SonP - F_EonCy = - m(v_f²/r)

And so,

N_SonP - mg = - m(v_f²/r)

N_SonP = m(g - (v_f²/r) - - - - - (eq1)

At minimum limiting velocity,

N_SonP < 0

So, m(g - (v_f²/r) < 0

Making v_f the subject;

g < (v_f²/r)

v_f² > rg

v_f >√rg - - - - (eq2)

Also, at upper maximum velocity, let's say the person's maximum limit of acceleration has a value of 3g.

Thus,

v_f < √3gr - - - - (eq3)

Thus, we can write the range limits as;

√rg < v_f < √3gr - - - - (eq4)

Now, if we assume that the friction has a negligible friction, we can apply the work energy principle to obtain;

U_i + W = U_f

This gives;

K_i + U_gi + W = K_f + U_gf

K_i, W and U_gf are zero. Thus,

U_gi = K_f

Now, due to the minimum and maximum limits, U_gi = ΔU_g =

-mg(Δh)

Thus,

mg(Δh) = K_f

mg(Δh) = (1/2)mv_f²

g(Δh) = (1/2)v_f²

Now, (Δh) = r - h

Thus, g(r-h) = (1/2)v_f² - - - - eq(5)

Where h is the height at which the cart and rider should start.

r is radius loop. Let's assume it has a value of 8 m. Thus, if we plug it into eq(4),we obtain;

√8g < v_f < √24g

g = 9.8 m/s²

√8 x 9.8 < v_f < √24 x 9.8

8.85 m/s < v_f < 15.34m/s

Now, since the maximum velocity is 15.34 m/s,lets plug it in eq(5) to obtain;

-9.8(8-h) = (1/2)•15.34²

-9.8(8-h) = 117.6578

8-h = -117.6578/9.8

8 + 12 = h

h = 20m

Now, since the minimum velocity is 8.85 m/s,lets plug it in eq(5) to obtain;

-9.8(8-h) = (1/2)•8.85²

-9.8(8-h) = 39.16125

h - 8 = 39.16125/9.8

h = 8 + 4 = 12m

So height should not be less than 12m otherwise, the cart will travel too slowly around the loop and will not remain in contact with the track.

vova2212 [387]3 years ago
5 0

Answer:

h >5/2r

Explanation:

This problem involves the application of the concepts of force and the work-energy theorem.

The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.

Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)

So from newton's second law of motion,

W – N = mv²/r

N = normal force = 0

W = mg

mg = ma = mv²/r

mg = mv²/r

v²= rg

v = √(rg)

The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop

So

ΔPE = ΔKE = 1/2mv²

The height at the roller coaster starts is usually higher than the top of the loop by design. So

ΔPE =mgh - mg×2r = mg(h – 2r)

2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.

In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.

So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.

ΔPE > ΔKE

mg(h–2r) > 1/2mv²

g(h–2r) > 1/2(√(rg))²

g(h–2r) > 1/2×rg

h–2r > 1/2×r

h > 2r + 1/2r

h > 5/2r

You might be interested in
Electronegativity is<br>____ at the top of the periodic table.​
DanielleElmas [232]

Answer:

Electronegativity is a chemical property at the top of the periodic table

Explanation:

electronegativity is a chemical property that measures the ability of an atom to attract a bonding pair of electrons when it is part of a compound

it's a property of atom that increases as you go to the right and up.

One example is the Pauling scale. it is a numerical scale of electronegativities. It was first developed by Linus Pauling.

it is commonly used to calculate the ability of electronegativity to attract electrons to itself.

The most common electronegative element is Flourine, having an assigned value of 4.0, ranging down to caesium and francium, having the least electronegative at 0.7

3 0
3 years ago
Read 2 more answers
A horizontal force of 675 N is needed to overcome the force of static friction between a level floor and a 300-kg crate. What is
White raven [17]

Explanation:

Below is an attachment containing the solution.

8 0
3 years ago
Calculate the net force on the right charge due to the other two. Enter a positive value if the force is directed to the right a
lbvjy [14]

Answer:

Answer:

A. - 0.017N. It acts to the left.

B. - 0.043N. It acts to the left.

C. 0.060N. It acts to the right.

Explanation:

A. For the +65μC charge, we consider it to be the origin. Hence, the two other charges are on the +x axis.

The net coulombs force on the charge is

F = [KQ(1)Q(2)]/(r^2) + [KQ(1)Q(3)]/(r^2)

Where K = Coloumbs constant =

Q(1) = charge on the leftmost side.

Q(2) = charge in the middle.

Q(3) = charge on the rightmost side.

F = [(8.988 × 10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(-95×10^-6)×(65×10^-6)]/(40^2)

F = 0.01753 - 0.03469

F = -0.017N

It has a negative sign, hence, it acts to the left.

B. For the +48μC charge, we consider it to be the origin. Hence, the leftmost charge is on the - x axis and the rightmost charge is on the +x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) + [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = -0.017 - 0.02562

F = - 0.043N

It has a negative sign, hence, it acts to the left.

C. For the -95μC charge, we consider it to be the origin. Hence, the two other charges are on the - x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) - [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(-95×10^-6)]/(40^2) - [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = +0.03469 + 0.02562

F = +0.060N

It has a positive sign, hence, it acts to the right.

Read more on Brainly.com - brainly.com/question/14592748#readmore

Explanation:

5 0
4 years ago
S Problem Set<br> 2.) 6.4 x 109 nm to cm
anyanavicka [17]

Answer:

6.4\cdot 10^2 cm

Explanation:

First of all, let's convert from nanometres to metres, keeping in mind that

1 nm = 10^{-9} m

So we have:

6.4\cdot 10^9 nm \cdot 10^{-9} m/nm = 6.4 m

Now we can convert from metres to centimetres, keeping in mind that

1 m = 10^2 cm

So, we find:

6.4 m \cdot 10^2 cm/m = 6.4\cdot 10^2 cm

8 0
3 years ago
A pendulum consists of a large balanced mass hanging on the end of a long wire. At the point where a 28-kg pendulum has the grea
Ray Of Light [21]

Answer:

The length of the wire is approximately 67.1 m

Explanation:

The parameters of the pendulum are;

The mass of the pendulum, m = 28 kg

The angle between the pendulum weight and the wire, θ = 89°

The magnitude of the torque exerted by the pendulum's weight, τ = 1.84 × 10⁴ N·m

We have;

Torque, τ = F·L·sinθ = m·g·l·sinθ

Where;

F = The applies force = The weight of the pendulum = m·g

g = The acceleration due to gravity ≈ 9.8 m/s²

l = The length of the wire

Plugging in the values of the variables gives;

1.84 × 10⁴ N·m = 28 kg × 9.8 m/s² × l × sin(89°)

Therefore;

l = 1.84 × 10⁴ N·m/(28 kg × 9.8 m/s² ×  sin(89°)) = 67.0656080029 m ≈ 67.1 m

The length of the wire, l ≈ 67.1 m

6 0
3 years ago
Other questions:
  • When light passes through a prism, the color refracted most is______
    7·1 answer
  • HELPP PLEASEEE Which issue is not a challenge an organism encounters?
    12·2 answers
  • A resistor with R=300 ? and an inductor are connected in series across an ac source that has voltage amplitude 500 V. The rate a
    9·1 answer
  • What is the average rate of change for this exponential function for the interval from x = 2 to x= 4 ?
    12·2 answers
  • Suggest why it might be a good idea to reduce the pressure of the air in car tyres if the car is to be driven over soft sand or
    6·1 answer
  • A .025 kg bullet is moving at 350 m/s when it hits and then passes through a 7 kg block of wood. After the bullet passes through
    10·1 answer
  • I have a doubt on heat and temperature. I need help with this science question and here the question: The water in a lake just r
    13·1 answer
  • #2 Distance (d) = _______37.5cm____________
    12·1 answer
  • TRUE OR FALSE
    6·2 answers
  • https://brainly.com/question/add?entry=1642&amp;task_content=Tania+was+asked+to+describe+the+relashio+of+electrity+and+magnetism
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!