Answer:
The cart's acceleration is 
Explanation:
Let's start by finding the net force acting on the cart, and then find its acceleration using Newton's 2nd Law.
Net force = 95.4 N -36.0 N = 59.4 N
Now, since we know the cart's mass, we can use Newton's 2nd Law to find the cart's acceleration:

Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
The question is missing, however, I guess the problem is asking for the value of the force acting between the two balls.
The Coulomb force between the two balls is:

where

is the Coulomb's constant,

is the intensity of the two charges, and

is the distance between them.
Substituting these numbers into the equation, we get

The force is repulsive, because the charges have same sign and so they repel each other.