After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>.
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
It is the ratio of the density of a substance to the density of a given reference material.
Explanation:
<em>Specific gravity is also known as relative density.</em>
<u>To find the relative density of substance, you:</u>
- Divide the density of substance measured
- And divide that by the density of the reference
Answer:
A: In all cases, the acceleration was the same.
Explanation:
I know this because its a clear obvious answer not only that it was one of my USA TESTPREP questions and it was right.
All you mainly have to do is the math - F=ma , In each case , the acceleration is 5 m/s squared
Question not making a sence, Clarify what you wana ask