The most common compound on earth is cellulose because it has enough energy to be the next source for biofuels.
Answer:
<h3>
<u>A). react with acid that is added and make a base.</u></h3>
explanation:
<em>Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added.</em>
Answer:
(a) H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Explanation:
The equation for your buffer equilibrium is:
H₃PO₄(aq) + H₂O(ℓ) ⇌ H₃O⁺(aq)+ H₂PO₄⁻(aq)
(a) Adding H₃O⁺
The hydronium ions react with the basic dihydrogen phosphate ions.
H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) Adding OH⁻
The OH⁻ ions react with the more acidic hydronium ions.
OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Answer:
CH₄
Explanation:
To determine the empirical formula of the hydrocarbon, we need to follow a series of steps.
Step 1: Determine the mass of the compound
The mass of the compound is equal to the sum of the masses of the elements that form it.
m(CxHy) = mC + mH = 7.48 g + 2.52 g = 10.00 g
Step 2: Calculate the percent by mass of each element
%C = mC / mCxHy × 100% = 7.48 g / 10.00 g × 100% = 74.8%
%H = mH / mCxHy × 100% = 2.52 g / 10.00 g × 100% = 25.2%
Step 3: Divide each percentage by the atomic mass of the element
C: 74.8/12.01 = 6.23
H: 25.2/1.01 = 24.95
Step 4: Divide both numbers by the smallest one, i.e. 6.23
C: 6.23/6.23 = 1
H: 24.95/6.23 ≈ 4
The empirical formula of the hydrocarbon is CH₄.