1 mole =6.0 * 10^23 atoms
3.0*10^23 atoms = 0.5 moles
the molar mass of neon is 20.18g/mole
0.5 moles = 10.09 grams
Answer:
76.875 cm3
<h2>
Explanation:</h2>
Since: Density = 
Then: Volume = 
The mass of the box = 246g
and the density = 3.2 g/cm3
Then: The volume = 
= 76.875 cm3
We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.
The question that cannot be answered using scientific method is "Which is the most interesting acid?"
<u>Answer:</u> The moles of water produced are 1.54 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethane = 15.42 g
Molar mass of ethane = 30.07 g/mol
Putting values in above equation, we get:

The chemical equation for the combustion of ethane follows:

By Stoichiometry of the reaction:
2 moles of ethane produces 6 moles of water
So, 0.513 moles of ethane will produce =
of water
Hence, the moles of water produced are 1.54 moles.