Answer:
Explanation:
a )
energy produced per second = 500 J
Heat produced = 500 x .8 = 400 J per second.
If m be the mass of water evaporated per unit hour
m x latent heat = 400 x 60 x 60
= m x 2.42 x 10⁶ = 1.44 x 10⁶
m = .595 kg per hour
b )
volume of water = 595 mL
bottles = 595 / 750
.8 or 4/5 of bottle. per hour.
The volume of water that will be produced from the reaction will be 6.3 mL
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:

The mole ratio of hydrogen sulfate to sodium hydroxide is 1:2.
Mole of hydrogen sulfate = 0.50 x 350/1000 = 0.175 moles
Mole of 15 grams sodium hydroxide = 15/40 = 0.375 moles
Thus, hydrogen sulfide is the limiting reagent.
Mole ratio of hydrogen sulfide to water = 1:2.
Equivalent mole of water = 0.175 x 2 = 0.35 moles
Mass of 0.35 moles of water = 0.35 x 18 = 6.3 grams.
1 gram of water = 1 ml.
Thus, 6.3 grams of water will be equivalent to 6.3 mL
More on stoichiometric calculation can be found here: brainly.com/question/27287858
#SPJ1
The problem can solved using the heat equation which is expressed as:
H = mCΔT
where H is the energy absorbed or released, m is the mass of the substance, C is the specific heat capacity, and ΔT is the change in temperature.
2208 J = 41 g x 4.18 J/g·°C x ( T - 24 °C)
T = 36.88 °C
<u>Answer:</u> The binding energy for lithium-6 nuclei is 3.09 E+11
<u>Explanation:</u>
Binding energy is defined as the energy which holds the nucleus together. It is basically the product of mass defect and the square of the speed of light.
This energy is calculated by using Einstein's equation, which is:

where,
E = Binding energy of the atom
= Mass defect = 0.0343g/mol =
(Conversion factor:
)
c = speed of light = 
Putting values in above equation, we get:

(Conversion factor:
)
Hence, the binding energy for lithium-6 nuclei is 3.09 E+11