Answer:
0.4
Explanation:
Given data:
Number of moles of SrCl₂ consumed = ?
Mass of ZnCl₂ produced = 54 g
Solution:
Chemical equation:
ZnSO₄ + SrCl₂ → SrSO₄ + ZnCl₂
Number of moles of ZnCl₂:
Number of moles = mass/ molar mass
Number of moles = 54 g/136.3 g/mol
Number of moles = 0.4 mol
Now we will compare the moles of ZnCl₂ with SrCl₂ from balance chemical equation.
ZnCl₂ : SrCl₂
1 : 1
0.4 : 0.4
Thus when 54 g of ZnCl₂ produced 0.4 moles of SrCl₂ react.
Explanation:
Reaction equation is as follows.

Here, 1 mole of
produces 2 moles of cations.
![[Na^{+}] = 2[Na_{2}SO_{3}] = 2 \times 0.58](https://tex.z-dn.net/?f=%5BNa%5E%7B%2B%7D%5D%20%3D%202%5BNa_%7B2%7DSO_%7B3%7D%5D%20%3D%202%20%5Ctimes%200.58)
= 1.16 M
= 0.58 M
The sulphite anion will act as a base and react with
to form
and
.
As, 
= 
=
According to the ICE table for the given reaction,

Initial: 0.58 0 0
Change: -x +x +x
Equilibrium: 0.58 - x x x
So,
![K_{b} = \frac{[HSO^{-}_{3}][OH^{-}]}{[SO^{2-}_{3}]}](https://tex.z-dn.net/?f=K_%7Bb%7D%20%3D%20%5Cfrac%7B%5BHSO%5E%7B-%7D_%7B3%7D%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BSO%5E%7B2-%7D_%7B3%7D%5D%7D)


x = 0.0003 M
So, x =
= 0.0003 M
= 0.58 - 0.0003
= 0.579 M
Now, we will use
= 0.0003 M
The reaction will be as follows.

Initial: 0.0003
Equilibrium: 0.0003 - x x x


= 
= 
Therefore, 
As, x <<<< 0.0003. So, we can neglect x.
Therefore, 
= 
x = 
x =
= 
![[H^{+}] = \frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
= 
=
M
Thus, we can conclude that the concentration of spectator ion is
M.
Answer:
5
Explanation:
just subtract 20-25 and 5 is left over which is how much the water when up with the rock.
Temperature change, colour change, releasing gas, bubbles and change in odor
Answer:
Oxygen
Explanation:
If two balloons are filled with hydrogen gas and helium gas respectively, then we want to identify what gas is in each balloon, we have to do so by exposing the both balloons to flame in an oxygen atmosphere.
Hydrogen combines with oxygen in the presence of a flame with quite a loud sound and the flame is sustained but when a flame is brought near helium gas in a balloon, the gas will only make a little sound when exposed to the flame and extinguish the flame.
The reason for the explosion of the gas in the hydrogen balloon is that combustion of hydrogen gas is exothermic. The heating up of surrounding air molecules leads to a sudden explosion.
However, the helium balloon makes a little sound when the balloon is ruptured releasing helium gas which extinguishes the flame.