Answer:

Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:

The volume of the gas starts at 250 milliliters and the temperature is 137 °C.

The volume of the gas is increased to 425 milliliters, but the temperature is unknown.

We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.

Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.


The units of milliliters (mL) cancel.



The temperature changes to <u>232.9 degrees Celsius.</u>
Put it in a beaker. Use a smaller beaker filled half way with ice and water and place in the larger one. It should be about an inch or two above the mixture. Heat over a Bunsen burner and the naphthalene will deposit on the bottom of smaller beaker.
And in this way, nephthalene be separated from the mixture of KBR and sand.
Answer:
1.33 atm
Explanation:
use general gas equation P1 V1/ T1 = P2 V2/ T2
rearrange and make P2 the subject then solve,it should give you 1.33 atm
Answer:
Joule - J
Explanation:
As energy is defined via work, the SI unit of energy is the same as the unit of work – the joule (J).