Answer:
The amount of solute added.
Explanation:
The amount of solute added is directly proportional to the number of ions.
The higher the amount added the higher the number of moles.
The number of moles is multiplied by the Avogadro's constant to get the number ions.
No of ions= No of moles × L
L is the Avogadro's number.
By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.
So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.
The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.
Answer:
their ability to conduct heat and electricity.
Explanation:
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g