3 is C i believe, and as for 4 minerals are solid, natural.. that's about all I can say...
The oxidation is occurring on Calcium ions as it release one electron and reduction will be occurring on fluorine ion as it accepts one electron.
<u>Explanation:</u>
An element will undergo oxidation and form a positive ion on releasing one or more electrons from its valence shell. While reduction is occurred in a chemical reaction, then the element will be forming a negative ion with the acceptance of one or more electrons in its valence shell.
So in the given process of calcium fluoride, the one electron from the valence shell of calcium will be released making it as
ions and this is termed as oxidation process. This one electron will be getting accepted by the fluorine ion and thus it will convert to
ions. This process of acceptance of electrons is termed as reduction.
Answer:
1.387 moles
Explanation:
Step 1:
The balanced equation for the reaction. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
Step 2:
Determination of the number of mole of Fe in 155.321g of Fe. This can be achieved by doing the following:
Mass of Fe = 155.321g
Molar Mass of Fe = 56g/mol
Number of mole of Fe =?
Number of mole = Mass/Molar Mass
Number of mole of Fe = 155.321/56
Number of mole of Fe = 2.774 mol
Step 3:
Determination of the number of mole of rust (Fe2O3) produced. This is illustrated below:
From the balanced equation above,
4 moles of Fe produced 2 moles of Fe2O3.
Therefore, 2.774 moles of Fe will produce = (2.774 x 2)/4 = 1.387 moles of Fe2O3.
Therefore, 1.387 moles of rust (Fe2O3) is produced from the reaction
Answer:
13.8 moles of water produced.
Explanation:
Given data:
Moles of KMnO₄ = 3.45 mol
Moles of water = ?
Solution:
Chemical equation:
16HCl + 2KMnO₄ → 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O
Moler ratio of water and KMnO₄:
KMnO₄ : H₂O
2 : 8
3.45 : 8/2×3.45 = 13.8 mol
Hence, 3.45 moles of KMnO₄ will produced 13.8 mol of water.