1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
10

Which is an example of a passive solar energy system

Engineering
1 answer:
Dafna1 [17]3 years ago
5 0
Stone or concrete contraptions
You might be interested in
A circular hoop sits in a stream of water, oriented perpendicular to the current. If the area of the hoop is doubled, the flux (
natka813 [3]

Answer:

The flux (volume of water per unit time) through the hoop will also double.

Explanation:

The flux = volume of water per unit time = flow rate of water through the hoop.

The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.

This means that

Flow rate = AV

where A is the area of the hoop

V is the velocity of the water through the hoop

This flow rate = volume of water per unit time = Δv/Δt =Q

From all the above statements, we can say

Q = AV

From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2

3 0
4 years ago
Horizontal shear forces and, consequently, horizontal shear stresses are caused in a flexural member at those locations where th
jek_recluse [69]

Answer:

False

Explanation:

When the horizontal shear forces act on the surface there is transverse shear stress at a particular point which is equal in magnitude. Pure bending is less common than a non uniform bending because the beam is not in equilibrium.

5 0
3 years ago
3. (a) (5 points) Suppose N packets arrive simultaneously to a link at which no packets are currently being transmitted or queue
Bezzdna [24]

Answer:

(N-1) × (L/2R) = (N-1)/2

Explanation:

let L is length of packet

R is rate

N is number of packets

then

first packet arrived with 0 delay

Second packet arrived at = L/R

Third packet arrived at = 2L/R

Nth packet arrived at = (n-1)L/R

Total queuing delay = L/R + 2L/R + ... + (n - 1)L/R = L(n - 1)/2R

Now

L / R = (1000) / (10^6 ) s = 1 ms

L/2R = 0.5 ms

average queuing delay for N packets = (N-1) * (L/2R) = (N-1)/2

the average queuing delay of a packet = 0 ( put N=1)

4 0
3 years ago
Vehicles begin to arrive at a parking lot at 8:10 am at a constant rate of 6 veh/min until 8:25 am. There is no arrival from 8:2
tresset_1 [31]

1.i am superman

2.175 175 175

3.em dilisues

4.bye classmate magbabalik pa ako

8 0
3 years ago
A rectangular car-top carrier of 1.7-ft height, 5.0-ft length (front to back), and 4.2-ft width is attached to the top of a car.
Nataliya [291]

Answer:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

Explanation:

We can assume that the general formula for the drag force is given by:

D= C_D \frac{\rho}{2}V^2 A

And we can see that is proportional to the area. On this case we can calculate the area with the product of the width and the height. And we can express the grad force like this:

D_1 = C_{D1} \frac{\rho}{2}V^2 (wh)

Where w is the width and h the height.

The last formula is without consider the area of the carrier, but if we use the area for the carrier we got:

D_2 = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier})

If we want to find the additional power added with the carrier we just need to take the difference between the multiplication of drag force by the velocity (assuming equal velocities for both cases) of the two cases, and we got:

\Delta P = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D1} \frac{\rho}{2}V^2 (wh) V

We can assume the same drag coeeficient C_{D1}=C_{D2}=C_{D} and we got:

\Delta P = C_{D} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D} \frac{\rho}{2}V^2 (wh) V

\Delta P = C_{D} \frac{\rho}{2}V^3 (A_{carrier})

1.7 ft =0.518 m

60 mph = 26.822 m/s

In order to find the drag coeffcient we ned to estimate the Reynolds number first like this:

R_E= \frac{Vl}{v}= \frac{26.822m/s*0.518 m}{1.58x10^{-4} Pa s}= 8.79 x10^{4}

And the value for the kinematic vicosity was obtained from the table of physical properties of the air under standard conditions.

Now we can find the aspect ratio like this:

\frac{l}{h}=\frac{5}{1.7}2.941

And we can estimate the calue of C_D = 1.2 from a figure.

And we can calculate the power difference like this:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

8 0
3 years ago
Other questions:
  • A ring-shaped seal, made from a viscoelastic material, is used to seal a joint between two rigid pipes. When incorporated in the
    5·1 answer
  • Now, suppose that you have a balanced stereo signal in which the left and right channels have the same voltage amplitude, 500 mV
    8·1 answer
  • "At 195 miles long, and with 7,325 miles of coastline, the Chesapeake Bay is the largest and most complex estuary in the United
    6·1 answer
  • A furnace wall consisting of 0.25 m of fire clay brick, 0.20 m of kaolin, and a 0.10‐m outer layer of masonry brick is exposed t
    8·1 answer
  • When wasDisney Cruise Line founded
    5·1 answer
  • 8.28 Water is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters the first-stage turbine at 140
    13·1 answer
  • How do information systems support the activities in a supply chain?
    8·1 answer
  • Global climate and weather patterns are driven by differences in the amount of heat energy in different areas of the earth. Whic
    9·1 answer
  • A double-threaded Acme stub screw of 2-in. major diameter is used in a jack having a plain thrust collar of 2.5-in. mean diamete
    11·1 answer
  • The thrust angle is checked by referencing
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!