Answer:
In engineering design, failure is expected. It helps you find the best solutions before implementing them in the “real world”. Having a prototype fail is a GOOD thing, because that means you have learned something new about the problem and potential solutions.
Explanation:
Answer: 10.29 sec.
Explanation:
Neglecting drag and friction, and at road level , the energy developed during the time the car is accelerating, is equal to the change in kinetic energy.
If the car starts from rest, this means the following:
ΔK = 1/2 m*vf ²
As Power (by definition) is equal to Energy/Time= 75000 W= 75000 N.m/seg, in order to get time in seconds, we need to convert 100 km/h to m/sec first:
100 (Km/h)*( 1000m /1 Km)*(3600 sec/1 h)= 27,78 m/sec
Now, we calculate the change in energy:
ΔK= 1/2*2000 Kg. (27,78)² m²/sec²= 771,728 J
<h2>If P= ΔK/Δt, </h2><h2>Δt= ΔK/P= 771,728 J / 75,000 J/sec= 10.29 sec.</h2>
Answer:
i don't think i understand the question
Explanation:
Answer:
Your question lacks the time required hence i will calculate the Average flow rate using a general concept and an assumed time value of 25 seconds
ANSWER : 104.904 ft^3/sec
Explanation:
General concept : Average flow rate is the volume of fluid per unit time through an area
Hence the average flow rate of the air conditioning unit of this room
Volume of the room / time taken for the air to cycle the room = v / t
assuming the time taken = 25 seconds
volume of room = width * length * height
= 14.1 * 15.5 * 12 = 2622.6 ft^3
Average flow rate = V/ t
= 2622.6 / 25 = 104.904 ft^3/sec
Answer:0.1898 Pa/m
Explanation:
Given data
Diameter of Pipe
Velocity of water in pipe
We know viscosity of water is
Pressure drop is given by hagen poiseuille equation

We have asked pressure Drop per unit length i.e.

Substituting Values

=0.1898 Pa/m