Explanation :
It is given that,
Mass of the car, m = 1000 kg
Force applied by the motor, 
The static and dynamic friction coefficient is, 
Let a is the acceleration of the car. Since, the car is in motion, the coefficient of sliding friction can be used. At equilibrium,




So, the acceleration of the car is
. Hence, this is the required solution.
First, find the work done. W = f*d, so 160 N * 1 m = 160 J. Then divide the work by the time to get the power. P = W/t. P = 160 J / 0.5 s = 320 W.
The answer is 320 W. Hope this helps, and have a great day! :)
Answer: The correct answer is option C.
Explanation:
Weight = Mass × Acceleration
Let the mass of the space probe be m
Acceleration due to gravity on the earth = g
Weight of the space probe on earth = W

Acceleration due to gravity on the Jupiter = g' = 2.5g
Weight of the space probe on earth = W'



The weight of the space probe on the Jupiter will be 2.5 times the weight of the space probe on earth.
Hence, the correct answer is option C.