Answer:
1.08
Explanation:
This is the case of interference in thin films in which interference bands are formed due to constructive interference of two reflected light waves , one from upper layer and the other from lower layer . If t be the thickness and μ be the refractive index then
path difference created will be 2μ t.
For light coming from rarer to denser medium , a phase change of π occurs additionally after reflection from denser medium, here, two times, once from upper layer and then from the lower layer , so for constructive interference
path diff = nλ , for minimum t , n =1
path diff = λ
2μ t. = λ
μ = λ / 2t
= 626 / 2 x 290
= 1.08
Answer:
t=0.42s
Explanation:
Here you have an inelastic collision. By the conservation of the momentum you have:

m1: mass of the bullet
m2: wooden block mass
v1: velocity of the bullet
v2: velocity of the wooden block
v: velocity of bullet and wooden block after the collision.
By noticing that after the collision, both objects reach the same height from where the wooden block was dropped, you can assume that v is equal to the negative of v2. In other words:

Where you assumed that the negative direction is upward. By replacing and doing v2 the subject of the formula you get:

Now, with this information you can use the equation for the final speed of an accelerated motion and doing t the subject of the formula. IN other words:

hence, the time is t=0.42 s
Explanation:
The left side of the periodic table has elements that have less number of electrons in the valence shell.
These elements loose electrons easily.These elements appear as metals or metalloids in nature.These are hard solids.Their inter molecular forces are very strong.
The right side of the periodic table has elements that have more number of electrons in the valence shell.
These elements gain electrons easily.These elements appear as non metals most of which are gases.Their inter molecular forces are weak.