Answer:
D. It has a central nucleus composed of 35 protons and 45 neutrons,
surrounded by an electron cloud containing 35 electrons.
hope this was helpful ! <3
Answer:
Reverberation is created when a sound produced in a sapce is reflected off surfaces, like walls, teh floor or the ceiling. ... The time it takes for this sound in the space to decrease in volume down to 60 decibels (practically silence) after the sound source is extinguished is its reverberation time.
Answer:
Let M1 = 8 kg and M2 = 34 kg
F = M a = (M1 + M2) a
F = M2 g the net force accelerating the system
M2 g = (M1 + M2) a
a = M2 / (M1 + M2) g = 34 / (42) g = .81 g = 7.9 m/s^2
(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965