1 newton is the force needed to accelerate 1 kilogram of mass
at the rate of 1 meter per second² .
1 N = 1 kg-m/s² .
It's a force equal to roughly 3.6 ounces.
The angular speed can be solve using the formula:
w = v / r
where w is the angular speed
v is the linear velocity
r is the radius of the object
w = ( 5 m / s ) / ( 5 cm ) ( 1 m / 100 cm )
w = 100 per second
The inner planets are not colder or larger than the outer ones,
and they're not comprised of gas.
The inner planets are the ones that are made of rock. ( D ).
Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.
Answer:
Friction force on the bullet is 58.7 N opposite to its velocity
Explanation:
As we know that initial speed of the bullet is 55 m/s
after travelling into the sand bag by distance d = 1.34 m it comes to rest
so final speed

now we can use kinematics top find the acceleration of the bullet

so we have


now by Newton's II law we know that

so we have

