1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
2 years ago
7

What will be the average velocity of a body falling in free fall on Earth for 3 s?

Physics
1 answer:
SpyIntel [72]2 years ago
6 0

Answer:

29.4m/s

Explanation:

Given parameters:

Time  = 3s

Unknown:

Average velocity  = ?

Solution:

To solve this problem, we use the expression below:

      v  = u + gt

v is the average velocity

u is the initial velocity  = 0m/s

g is the acceleration due to gravity  = 9.8m/s²

t is the time

So;

        v  = 0 + (9.8 x 3)  = 29.4m/s

You might be interested in
If the cart has potential energy of 5,000 J and kinetic energy of 2,750 J. How much mechanical energy does the cart have?
Dahasolnce [82]

Answer: 7750 J

Explanation:

Mechanical energy is potential energy added to kinetic energy.

5000 + 2750 J = 7750 J

6 0
2 years ago
An 3.7 lb hammer head, traveling at 5.8 ft/s strikes a nail and is brought to a stop in 0.00068 s. The acceleration of gravity i
CaHeK987 [17]

Answer:

31677.2 lb

Explanation:

mass of hammer (m) = 3.7 lb

initial velocity (u) = 5.8 ft/s

final velocity (v) = 0

time (t) = 0.00068 s

acceleration due to gravity (g) 32 ft/s^{2}

force = m x ( a + g )

where

  • m is the mass = 3.7 lb
  • g is the acceleration due to gravity = 32 ft/s^{2}
  • a is the acceleration of the hammer

       from v = u + at

       a = (v-u)/ t

       a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)

we can substitute all required values into force= m x (a+g)

force = 3.7 x (8529.4 + 32) = 31677.2 lb

       

4 0
2 years ago
A white-blue star is hotter than a red star.
Katena32 [7]
This is true!!

Good luck hope this helped!
4 0
3 years ago
Read 2 more answers
1. A DC-10 jumbo jet maintains an airspeed of 550 mph in a southwesterly direction. The velocity of the jet stream is a constant
Vladimir79 [104]

Answer:

The magnitude of actual velocity is <u>496.67 mph</u> and its direction is <u>51.54° with the x axis in the third quadrant</u>.

Explanation:

Given:

Speed of jumbo jet in southwesterly direction (v_j) = 550 mph

Velocity of jet stream from west to east direction (v_s)=80\ mph

First let us draw a vectorial representation of the above velocity vectors.

Consider the south direction as negative y axis and west direction as negative x axis.

From the diagram,

The velocity of the jet can be represented as:

\vec{v_j}=-550\cos(45)\vec{i}+(-550\sin(45)\vec{j} )\\\\\vec{v_j}=-388.91\vec{i}-388.91\vec{j}\ mph

Similarly, the velocity of the stream is, \vec{v_s}=80\vec{i}

Now, the vector sum of the above two vectors gives the actual velocity of the aircraft. So, the resultant velocity is given as:

\vec{v}=\vec{v_j}+\vec{v_s}\\\\\vec{v}=-388.91\vec{i}-388.91\vec{j}+80\vec{i}\\\\\vec{v}=(-388.91+80)\vec{i}-388.91\vec{j}\\\\\vec{v}=(-308.91)\vec{i}-388.91\vec{j}

Now, magnitude is given as the square root of sum of the squares of the 'i' and 'j' components. So,

|\vec{v}|=\sqrt{(-308.91)^2+(-388.91)^2}\\\\|\vec{v}|=496.67\ mph

As the horizontal and vertical components of actual velocity negative, the resultant vector makes an angle \theta with the x axis in the third quadrant.

The direction is given as:

\theta=\tan^{-1}(\frac{v_y}{v_x})\\\\\theta=\tan^{-1}(\frac{-388.91}{-308.91})\\\\\theta=51.54\°(Third\ quadrant)

Therefore, the magnitude of actual velocity is 496.67 mph and its direction is 51.54° with the x axis in the third quadrant.

5 0
2 years ago
The motion of an object undergoing constant acceleration can be modeled by the kinematic equations. One such equation is xf=xi+v
Arturiano [62]

Answer:

a = 1.72 m/s²

Explanation:

The given kinematic equation is the 2nd equation of motion. The equation is as follows:

xf = xi + (Vi)(t) + (1/2)(a)t²

where,

xf = the final position =  5000 m

xi = the initial position = 1000 m

Vi = the initial velocity = 15 m/s

t = the time taken = 60 s

a = acceleration = ?

Therefore,

5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²

5000 m = 1000 m + 900 m + a(1800 s²)

5000 m = 1900 m + a(1800 s²)

5000 m - 1900 m = a(1800 s²)

a(1800 s²) = 3100 m

a = 3100 m/1800 s²

<u>a = 1.72 m/s²</u>

5 0
3 years ago
Other questions:
  • These three members of the Nile gas family have one property in common because they are gases at room temperature. That is they
    5·1 answer
  • A close coiled helical spring of round steel wire 10 mm diameter having 10 complete turns with a mean radius of 60 mm is subject
    12·1 answer
  • What structural formula represents 4 electrons shared between two atoms?
    7·1 answer
  • Problem #2: An apple is thrown upward with an initial velocity of +24.0 m/s. a. Sketch the apple's trip and label what you know.
    14·1 answer
  • The maximum current output of a 60 ω circuit is 11 A. What is the root mean square voltage of the circuit?
    9·1 answer
  • a train starts from rest and accelerates uniformly until it has traveled 2.1 km and acquired a forward velocity of 24 m/s.
    11·1 answer
  • The blades of a metal cutter are shorter than the blades of paper cutter scissor. Give reason​
    11·1 answer
  • A student conducts an experiment in which a cart is pulled by a variable applied force during a 2 s time interval. In trial 1, t
    9·1 answer
  • 1. Why do certain elements have isotopes?
    7·1 answer
  • The maximum distance particles of the medium move when a wave passes through them is wave.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!