Answer:
<h2>507 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>507 J</h3>
Hope this helps you
Answer:
T
Explanation:
= Power of the bulb = 100 W
= distance from the bulb = 2.5 m
= Intensity of light at the location
Intensity of the light at the location is given as


= 1.28 W/m²
= maximum magnetic field
Intensity is given as


T
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Answer: 0.86 × 10^14
Explanation:
Given the following :
Radius of proton = 1.2 × 10-15 m
Radius of hydrogen atom = 5.3 × 10-11 m
Density of proton could be calculated thus:
Mass of proton = 1.67 × 10^-27 kg
Using the formula :
(4/3) × pi × r^3
(4/3) × 3.142 × (1.2 × 10^-15)^3 = 7.24 × 10^-45
Density = mass / volume
Density = (1.67 × 10^-27) / ( 7.24 × 10^-45)
= 0.2306 × 10^18
Density of hydrogen atom:
Mass of hydrogen atom= 1.67 × 10^-27 kg
Using the formula :
(4/3) × pi × r^3
(4/3) × 3.142 × (5.3 × 10^-11)^3 = 6.24 × 10^-31
Density = mass / volume
Density = (1.67 × 10^-27) / ( 6.24 × 10^-31)
= 0.2676 × 10^4
Ratio is thus:
Density of proton / density of hydrogen atom
0.2306 × 10^18 / 0.2676 × 10^4 = 0.8617 × 10^14
X-rays are high energy electrons
that can cause damage when exposed under extreme conditions. The best technology
that can block it is using a lightweight type of metal foam. It can take in
high energy collisions which also exhibits high forces. it does not only block
x-rays but also, neutron radiation and gamma rays.