Work,
in thermodynamics, is the amount of energy that is transferred from one system
to another system without transfer of entropy. It is equal to the external
pressure multiplied by the change in volume of the system. It is expressed as
follows:<span>
W = PdV
Integrating and assuming that P is not affected
by changes in V or it is constant, then we will have:
W = P (V2 - V1)
Substituting the given values:
P = 1.0 atm = 101325 Pa
(V2 - V1) = 0.50 L =
W = 101325 N/m^3 ( 0.50) (1/1000) m^3
W = 50.66 N-m or 50.66 J
<span>
So, in the expansion process about 50.66 J of work is being done.
</span></span><span><span>
</span></span>
The ideal spring equation is
Stretch = K times Force .
This says that the stretch is directly proportional to the force.
In simple English, that means that if you double the force, then
you double the stretch, and if you multiply the force by π or
any other number, you multiply the stretch by the same number.
So you can always write a proportion for a spring:
Stretch₁ / Force₁ = Stretch₂ / Force₂ .
Part A:
In Part-A of this question, the force is increased to (2.5 / 2.0) = 1.25 times .
So the stretch is also increased to 1.25 times .
(1.25) x (6.1 cm) = 7.625 cm .
The answer to the question would be Refraction.
as we know the two possible answers are refraction and reflection. The questions shows a decrease in speed thus being refraction as a ray in a reflection would not lose its speed. Hope this helps!
<h2> Charge = 25.9

</h2>
Explanation:
Given,
The average current (I) =
and
Time period (T) = 0.133 s
The charge is calculated by multiplying the current to the time period.
Hence,
To find, the charge delivered to the ground by the lightning bolt(Q) = ?
By applying the formula of charge that is-
Charge(Q) = 
∴ Charge(Q) = 

= 25.89111 
= 25.9 
<h3>Thus, the charge of 25.9

is delivered to the ground by the lightning bolt.</h3>
I go with D .
Explanation:
I go with D because neither if the ballons have the same thermal energy.