1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
5

What is the wavelength in nm of a light whose first order bright band forms a diffraction angle of 30 degrees, and the diffracti

on grating has 700 lines per mm? ​
Physics
1 answer:
Artist 52 [7]3 years ago
8 0

Answer:

The wavelength is 3500 nm.

Explanation:

d= \frac{1}{700 lines per mm} = 0.007mm = 7000 nm

n= 1

θ= 30°

λ= unknown

Solution:

d sinθ = nλ

λ = \frac{7000 nm sin 30}{1}

λ = 3500 nm

You might be interested in
If the angular frequency of the motion of a simple harmonic oscillator is doubled, by what factor does the maximum acceleration
Nataly_w [17]

Answer:

When we double the angular velocity the maximum acceleration (a_{max}) will changes by a factor of 4.

Explanation:

Given the angular frequency (\omega) of the simple harmonic oscillator is doubled.

We need to find the change in the maximum acceleration of the oscillator.

a_{max}=A\omega^2

Now, according to the problem, the angular frequency (\omega) got doubled.

Let us plug \omega=2\times \omega. Then the maximum acceleration will be a_{max'}

a_{max}=A\omega^2

a_{max'}=A(2\times \omega)^2\\a_{max'}=A\times 4\omega\\a_{max'}=4A\omega

a_{max'}=4a_{max}

We can see, when we double the angular velocity the maximum acceleration will changes by a factor of 4.

6 0
2 years ago
A merry-go-round is spinning at a rate of 4.04.0 revolutions per minute. Cora is sitting 0.50.5 m from the center of the merry-g
dsp73

Answer:

angular speed of both the children will be same

Explanation:

Rate of revolution of the merry go round is given as

f = 4.04 rev/min

so here we have

f = \frac{4.04}{60} =0.067 rev/s

here we know that angular frequency is given as

\omega = 2\pi f

\omega = 2\pi(0.067)

\omega = 0.42 rad/s

now this is the angular speed of the disc and this speed will remain same for all points lying on the disc

Angular speed do not depends on the distance from the center but it will be same for all positions of the disc

7 0
3 years ago
Un proyectil es lanzado horizontalmente desde una altura de 12 metro con una velocidad de 80 m/sg. a.Calcular el tiempo de vuelo
Naily [24]

Answer:

t= 1,56 s ,   x= 124,8 m , v = (80 i^ - 15,288 j ) m/s

Explanation:

Este es un ejercicio de lanzamiento proyectiles, comencemos por encontrar el tiempo que tarda en llegar al piso

        y = y₀ + v_{oy} t – ½ g t²

en este caso la altura inicial es y₀= 12 m y llega a y=0 , como es lanzado horizontalmente la velocidad vertical es cero (v_{oy}=0)

       0 = y₀ – ½ g t²

       t= √ (2 y₀/g)

calculemos

       t= √ ( 2 12 / 9,8)

       t= 1,56 s

El alcance del proyectil es la distancia horizontal recorrida  

        x = v₀ₓ t

        x = 80 1,56

        x= 124,8 m

La velocidad de impacto cuando toca el suelo

        vx = v₀ₓ = 80 ms

        v_{y} = v_{oy} – gt

        v_{y} = - 9,8 1,56

        v_{y} = - 15,288 m/s

la velocidad es

       v = (80 i^ - 15,288 j ) m/s

Traducttion  

This is a projectile launching exercise, let's start by finding the time it takes to reach the ground

        y = y₀ + v_{oy} t - ½ g t²

in this case the initial height is i = 12 m and it reaches y = 0, as it is thrown horizontally the vertical speed is zero (v_{oy} = 0)

       0 =y₀I - ½ g t²

       t = √ (2y₀ / g)

let's calculate

       t = √ (2 12 / 9.8)

       t = 1.56 s

Projectile range is the horizontal distance traveled

        x = v₀ₓ t

        x = 80 1.56

        x = 124.8 m

Impact speed when it hits the ground

        vₓ = v₀ₓ = 80 ms

        v_{y} = v_{oy} - gt

        v_{y} = - 9.8 1.56

        v_{y} = - 15,288 m / s

the speed is

       v = (80 i ^ - 15,288 j) m / s

7 0
2 years ago
You throw a ball straight up. You are extra strong feeling today. It takes 11 seconds for the ball to come back down.
ollegr [7]

Answer:

A. 148.23 m

B. 2.75 m/s

Explanation:

The following data were obtained from the question:

Time of flight (T) = 11 s

Maximum height (h) =?

Initial velocity (u) =?

Next, we shall determine the time taken for the ball to get to the maximum height. This can be obtained as follow:

Time of flight (T) = 11 s

Time (t) to reach the maximum height =.?

T = 2t

11 = 2t

Divide both side by 2

t = 11/2

t = 5.5 s

NOTE: Time to reach the maximum height is the same as the time taken for the ball to fall back to the plane of projection.

A. Determination of the maximum height to which the ball was thrown.

Time (t) to reach maximum height = 5.5 s

Acceleration due to gravity (g) = 9.8 m/s²

Maximum height (h) =?

h = ½gt²

h = ½ × 9.8 × 5.5²

h = 4.9 × 30.25

h = 148.23 m

B. Determination of the initial velocity.

Maximum height (h) reached = 148.23 m

Acceleration due to gravity (g) = 9.8 m/s²

Initial velocity (u) =?

u² = h/2g

u² = 148.23 / (2 × 9.8)

u² = 148.23 / 19.6

Take the square root of both side

u = √(148.23 / 19.6)

u = 2.75 m/s

5 0
2 years ago
How does pachira help indoor pollution
kherson [118]

improve air quality.

8 0
2 years ago
Other questions:
  • What word can I use instead of saying "each time"
    7·1 answer
  • NEED ANSWER FAST PLZ
    7·2 answers
  • What is the speed vf of the package when it hits the ground?
    7·1 answer
  • Solutions to environmental problems ________.
    14·1 answer
  • In a series RCL circuit the generator is set to a frequency that is not the resonant frequency. This nonresonant frequency is su
    15·1 answer
  • the oxygen you breathe is made up of two oxygen atoms bound together why is oxygen molecule but not componud
    11·1 answer
  • Lake Baikal in Siberia has a maximum depth of 1642 m. What is the water
    5·1 answer
  • 20 cubic inches of a gas with an absolute pressure of 5 psi is compressed until its pressure reaches 10 psi. What's the new volu
    5·2 answers
  • Car 1 drives 20 mph to the south, and car 2 drives 30 mph to the north. From
    10·1 answer
  • A car travels for 10s at a steady speed of 20m/s along a straight road. The traffic lights ahead change to red, and the car slow
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!