1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
10

A cat’s crinkle ball toy of mass 15g is thrown straight up with an initial speed of 3m/s. Assume in this problem that air drag i

s negligible. If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when the ball is at its peak height?
Physics
1 answer:
stiks02 [169]3 years ago
4 0

Answer:

P.E = 0.068 J = 68 mJ

Explanation:

First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:

2gh = Vf² - Vi²

where,

g = -9.8 m/s²  (negative sign due to upward motion)

h = height attained by the ball toy = ?

Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)

Vi = Initial Velocity = 3 m/s

Therefore,

2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²

h = (9 m²/s²)/(19.6 m/s²)

h = 0.46 m

Now, the gravitational potential energy of ball at its peak is given by the following formula:

P.E = mgh

P.E = (0.015 kg)(9.8 m/s²)(0.46 m)

<u>P.E = 0.068 J = 68 mJ</u>

You might be interested in
Letter C on the map labels which feature of the Middle East?
likoan [24]

Honest, the map is so tiny, and so fuzzy when I blow it up, I really can't see anything on it clearly.  But I think maybe I do see a letter ' C ' in the eastern Mediterranean, with a curved line over to the southern Gaza strip, where it meets Sinai.  So I'll say it's the Gaza Strip.

6 0
2 years ago
Instruments on board the trmm (tropical rainfall measuring mission) satellite show 3d images of very tall rain columns called __
Ket [755]
These columns are called hot towers
7 0
3 years ago
After you enlarge a map, which one of the following scale remains correct?
9966 [12]

Answer:

None

Explanation:

An scale is the factor by which actual features on ground are enlarged or reduced for representing on a plane. There are different kinds of scales:

  • Verbal scale use of words to represent scale information on the map.  The distance or linear units are used for depicting this scale on the map.  For example: 1 inch = 1 Kilo meter.
  • Fractional scale uses the numbers or values for showing the scale instead of words. As the name says, it is represented using a fraction or ratio.  Example: 1: 10,000 or 1/10,000
  • In large scale more details are shown in a map, however, less area coverage will be shown in a single map as the scale is large and more details are given.  Example: 1:500
  • Small scale is exactly opposite to the large scale, less details are shown as magnification is not enough, however a large amount of area can be shown in a single map.  Example: 1:25,000
  • A graphic scale is a bar that has been calibrated to show map distances. On maps that have been reduced or enlarged the original ratio and written scales are incorrect, since the relationship between map distance and real world distance has been altered, graphic scale is enlarged or reduced to the same extent as the map, this makes it the right option.

I hope you find this information useful and interesting! Good luck!

6 0
3 years ago
Two particles are located on the x axis. particle 1 has a mass m and is at the origin. particle 2 has a mass 2m and is at x = +l
wlad13 [49]

The solution would be like this for this specific problem:

<span>
The force on m is:</span>

<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] -> 1

The force on 2m is:</span>

<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] -> 2

From (1), you’ll get M = 2mx^2 / L^2 and from (2) you get M = m(L - x)^2 / L^2 

Since the Ms are the same, then 

2mx^2 / L^2 = m(L - x)^2 / L^2 

2x^2 = (L - x)^2 

xsqrt2 = L - x 

x(1 + sqrt2) = L 

x = L / (sqrt2 + 1) From here, we rationalize. 

x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1) 

x = L(sqrt2 - 1) / (2 - 1) 


x = L(sqrt2 - 1) </span>

 

= 0.414L

 

<span>Therefore, the third particle should be located the 0.414L x axis so that the magnitude of the gravitational force on both particle 1 and particle 2 doubles.</span>

8 0
3 years ago
A ball has a mass of 1.5kg and is thrown straight up with a speed of 60m/s, what is the ball’s momentum:
madam [21]

Answer:

Assumption: the air resistance on this ball is negligible. Take g = 10\; \rm m \cdot s^{-2}.

a. The momentum of the ball would be approximately 60\;\rm kg \cdot m \cdot s^{-1} two seconds after it is tossed into the air.

b. The momentum of the ball would be approximately \rm \left(-45\; \rm kg \cdot m \cdot s^{-1}\right) three seconds after it reaches the highest point (assuming that it didn't hit the ground.) This momentum is smaller than zero because it points downwards.

Explanation:

The momentum p of an object is equal its mass m times its velocity v. That is: \vec{p} = m \cdot \vec{v}.

Assume that the air resistance on this ball is negligible. If that's the case, then the ball would accelerate downwards towards the ground at a constant g \approx -10\; \rm m \cdot s^{-2}. In other words, its velocity would become approximately 10\; \rm m \cdot s^{-1} more negative every second.

The initial velocity of the ball is 60\; \rm m \cdot s^{-1}. After two seconds, its velocity would have become 60\;\rm m \cdot s^{-1} + 2\; \rm s \times \left(-10\;\rm m \cdot s^{-1}\right) = 40\; \rm m \cdot s^{-1}. The momentum of the ball at that time would be around p = m \cdot v \approx 60\; \rm kg \cdot m \cdot s^{-1}.

When the ball is at the highest point of its trajectory, the velocity of the ball would be zero. However, the ball would continue to accelerate downwards towards the ground at a constant g \approx -10\; \rm m \cdot s^{-2}. That's how the ball's velocity becomes negative.

After three more seconds, the velocity of the ball would be 0\; \rm m \cdot s^{-1} + 3\; \rm s \times \left(-10\; \rm m \cdot s^{-2}\right) = -30 \; \rm m \cdot s^{-1}. Accordingly, the ball's momentum at that moment would be p = m \cdot v \approx \left(-45\; \rm kg \cdot m \cdot s^{-1}\right).

3 0
3 years ago
Other questions:
  • To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following general equation y(
    12·1 answer
  • Two stones are launched from the top of a tall building. One stoneis thrown in a direction 30.0^\circ above the horizontal with
    6·1 answer
  • Which of the following objects is in dynamic equilibrium? A - a man standing in one place without moving B- a bicycle accelerati
    9·2 answers
  • A 62 kg skydiver moving at terminal speed falls 50 m in 1 s. What power is the skydiver expending on the air?
    12·1 answer
  • What conditions can create the largest waves in the ocean. this is for science. i need done asap.
    13·1 answer
  • Which describes a reflected image in a plane mirror?
    11·1 answer
  • The surface of the moon always looks the same because the moon has no:
    11·1 answer
  • A block of mass m is attached to the end of a spring (spring stiffness constant k ). The mass is given an initial displacement x
    12·1 answer
  • Help please:))))))))))))))))))))
    12·1 answer
  • A sound wave with a wavelength of 3200 cm travels 7,712 meters in 16 seconds. What is the frequency of the wave?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!