1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
3 years ago
5

A box is held at rest by two ropes that form 30° angles with the vertical. The tension T in either rope is 42 N. What is the wei

ght (w) of the box?
36 N

79 N

86 N

73 N

62 N

Physics
1 answer:
iragen [17]3 years ago
7 0
<h3><u>Answer;</u></h3>

= 73 N

<h3><u>Explanation</u>;</h3>

Using the formula

2 T cos(30°) = w

Where; T is the tension on each string, while w is the weight of the box given by mg

Therefore;

W = 2Tcos 30°

    = 2 × 42 cos 30°

    = 84 cos 30°

    = 72.74

<u>   ≈ 73 N</u>

You might be interested in
Which theory best explains the present arrangement of continents oceans and landforms on earth? A the Pangaea theory B The conti
solong [7]

Plate Tectonic Theory

3 0
3 years ago
A train whistle is heard at 300 Hz as the train approaches town. The train cuts its speed in half as it nears the station, and t
spin [16.1K]

Answer:

The speed of the train before and after slowing down is 22.12 m/s and 11.06 m/s, respectively.

Explanation:

We can calculate the speed of the train using the Doppler equation:

f = f_{0}\frac{v + v_{o}}{v - v_{s}}        

Where:

f₀: is the emitted frequency

f: is the frequency heard by the observer  

v: is the speed of the sound = 343 m/s

v_{o}: is the speed of the observer = 0 (it is heard in the town)

v_{s}: is the speed of the source =?

The frequency of the train before slowing down is given by:

f_{b} = f_{0}\frac{v}{v - v_{s_{b}}}  (1)                  

Now, the frequency of the train after slowing down is:

f_{a} = f_{0}\frac{v}{v - v_{s_{a}}}   (2)  

Dividing equation (1) by (2) we have:

\frac{f_{b}}{f_{a}} = \frac{f_{0}\frac{v}{v - v_{s_{b}}}}{f_{0}\frac{v}{v - v_{s_{a}}}}

\frac{f_{b}}{f_{a}} = \frac{v - v_{s_{a}}}{v - v_{s_{b}}}   (3)  

Also, we know that the speed of the train when it is slowing down is half the initial speed so:

v_{s_{b}} = 2v_{s_{a}}     (4)

Now, by entering equation (4) into (3) we have:

\frac{f_{b}}{f_{a}} = \frac{v - v_{s_{a}}}{v - 2v_{s_{a}}}  

\frac{300 Hz}{290 Hz} = \frac{343 m/s - v_{s_{a}}}{343 m/s - 2v_{s_{a}}}

By solving the above equation for v_{s_{a}} we can find the speed of the train after slowing down:

v_{s_{a}} = 11.06 m/s

Finally, the speed of the train before slowing down is:

v_{s_{b}} = 11.06 m/s*2 = 22.12 m/s

Therefore, the speed of the train before and after slowing down is 22.12 m/s and 11.06 m/s, respectively.                        

I hope it helps you!                                                        

7 0
2 years ago
calculate the resistance of 50m length of wire of cross sectional area 0.01 square mm and of resistivity 5*10 to the power minus
Pachacha [2.7K]
Resistance R = resistivity * length / area&#10;&#10;R = 5  10^{-8} * 50 m / 0.01 *  10^{-3} * 10^{-3}&#10;&#10;R =  250 Ohms&#10;
8 0
3 years ago
A train traveled from Station A to Station B at an average speed of 80 kilometers per hour and then from Station B to Station C
Vinil7 [7]

Answer:

1)

75 kmh⁻¹

2)

75 kmh⁻¹

Explanation:

1)

v_{ab} = Speed of train from station A to station B = 80 kmh⁻¹

d_{ab} = distance traveled from station A to station B

t_{ab} = time of travel between station A to station B

we know that

Time = \frac{distance}{speed}

t_{ab} = \frac{d_{ab}}{v_{ab}} = \frac{d_{ab}}{80}

d_{bc} = distance traveled from station B to station C

v_{bc} = Speed of train from station B to station C = 60 kmh⁻¹

t_{bc} = \frac{d_{bc}}{v_{bc}} = \frac{d_{bc}}{60}

Total distance traveled is given as

d = d_{ab} + d_{bc}

Total time of travel is given as

t = t_{ab} + t_{bc}

Average speed is given as

v_{avg} = \frac{d}{t} \\v_{avg} = \frac{d_{ab} + d_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{d_{ab} + d_{bc}}{(\frac{d_{ab}}{80} ) + (\frac{d_{bc}}{60} ) }

Given that :

d_{ab} = 4 d_{bc}

So

v_{avg} = \frac{4 d_{bc} + d_{bc}}{(\frac{4 d_{bc}}{80} ) + (\frac{d_{bc}}{60} ) }\\v_{avg} = \frac{4 + 1}{(\frac{4 }{80} ) + (\frac{1}{60} ) }\\v_{avg} = 75 kmh^{-1}

2)

v_{ab} = Speed of train from station A to station B = 80 kmh⁻¹

t_{ab} = time of travel between station A to station B

d_{ab} = distance traveled from station A to station B

we know that

distance = (speed) (time)

d_{ab} = v_{ab} t_{ab}\\d_{ab} = 80 t_{ab}

d_{bc} = distance traveled from station B to station C

v_{bc} = Speed of train from station B to station C = 60 kmh⁻¹

t_{bc} = time of travel for train from station B to station C

we know that

distance = (speed) (time)

d_{bc} = v_{bc} t_{bc}\\d_{bc} = 60 t_{bc}

Total distance traveled is given as

d = d_{ab} + d_{bc}\\d = 80 t_{ab} + 60 t_{bc}

Total time of travel is given as

t = t_{ab} + t_{bc}

Average speed is given as

v_{avg} = \frac{d}{t} \\v_{avg} = \frac{d_{ab} + d_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{80 t_{ab} + 60 t_{bc}}{t_{ab} + t_{bc}}

Given that :

t_{ab} = 3 t_{bc}

So

v_{avg} = \frac{80 t_{ab} + 60 t_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{80 (3) t_{bc} + 60 t_{bc}}{(3) t_{bc} + t_{bc}}\\v_{avg} = \frac{(300) t_{bc}}{(4) t_{bc}}\\v_{avg} = 75 kmh^{-1}

4 0
3 years ago
People with good hearing can perceive sounds as low in level as −7.53 dB at a frequency of 3000 Hz. What is the intensity of thi
lora16 [44]

Answer:

attached below

Explanation:

3 0
3 years ago
Other questions:
  • In the formation of an ionic compound, a metal atom is most likely to _____ valence electrons
    7·2 answers
  • A 10000 kg rocket blasts off vertically from the launch pad with a constant upward of 2.25 m/s2 and feels no appreciable air res
    12·1 answer
  • The pH of pure water at 25°C is 7.0. The enthalpy change of the autoionization of water is +55.89 kJ/mol. What is the pH of pure
    9·1 answer
  • Um ladrão tenta fugir sozinho carregando em suas mãos uma mala cheia de barras de ouro. A densidade do ouro é igual a 20 g/cm³,
    8·1 answer
  • Blue light (λ = 475 nm) is sent through a single slit with a width of 2.1 µm. What is the maximum possible number of bright frin
    7·1 answer
  • A simple pendulum is made from a 0.54-m-long string and a small ball attached to its free end. The ball is pulled to one side th
    6·1 answer
  • A circuit featuring multiple paths through which current can flow is best classified into which category?
    16·2 answers
  • A thin disk of mass 2.2 kg and radius 61.2 cm is suspended by a horizonal axis perpendicular to the disk through its rim. The di
    15·1 answer
  • What kind of energy is used in baking?<br>A. Light<br>B. Sound<br>C. Heat<br>D. Mechanical​
    13·1 answer
  • A student runs up a flight of stairs which info is not needed to calculate the rate of the student is doing work against gravity
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!