Answer:
the angle is about 67.79 degrees
Explanation:
We know that at its maximum height, the vertical component of the projectile's launching (initial) velocity (Vyi) is zero, so at that point it total velocity equals the horizontal component of the initial velocity (Vxi = 0.5 m/s)
We also know that the maximum height of the projectile is given by the square of its initial vertical component of the velocity (Vyi) divided by 2g, therefore half of such distance is :

we can use this information to find the y component of the velocity at that height via the formula:

Now we use the information that tells us the speed of the projectile at this height to be 1 m/s. That should be the result of the vector addition of the vertical and horizontal components:

Now we can use the arc-tangent to calculate the launching angle, since we know the two initial component of the velocity vector:

ANSWER:
a. Velocity decreased
STEP-BY-STEP EXPLANATION:
If the person inside the bus experiences a forward movement, this means that the bus is braking, since by action-reaction to compensate for the movement, the body moves forward.
When braking, it means that there is a decrease in speed, therefore, the correct answer is a. Velocity decreased
Answer:
1.76m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 65m/s
Distance traveled = 1200m
Unknown:
Acceleration = ?
Solution:
This is linear velocity and we apply the appropriate motion equation to solve this problem.
V² = U² + 2as
S is the distance
u is the initial velocity
V is the final velocity
a is the acceleration
Now, insert the parameters and solve;
65² = 0² + 2 x a x 1200
4225 = 2400a
a = 1.76m/s²
Answer:
The normal strain along an axis oriented 45° from the positive x axis in the clockwise direction is -ε₀/2
Explanation:
Given that

From equation of normal strain in x direction:

Substituting the values:

Answer:

Explanation:
As we know that in AC circuit we have

here we have
V = 59 V
i = 5.05 A
so we will have


also we know that

here we will have

