The bowling ball would have the most inertia because it has the most mass. Inertia is the ability to resist a change in motion. So, it sort of makes sense that the more massive an object, the more resistance it has against outside forces.
Bowling ball would be your answer since it has the most mass.
Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking

<u>Given :</u>








<u>Let's Slove :</u><u> </u>



The Answer is C. the distance light travels in a year
2,450 Joules, kinetic energy is 1/2 mass x velocity squared.