Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858
Hydrogen has the smaller, lighter, simpler nucleus.
Helium has the larger, heavier, more complex nucleus.
Hydrogen nuclei are fused to form helium nuclei.
When that happens, energy is released.
Answer:
f = 1.69*10^5 Hz
Explanation:
In order to calculate the frequency of the sinusoidal voltage, you use the following formula:
(1)
V_L: voltage = 12.0V
i: current = 2.40mA = 2.40*10^-3 A
L: inductance = 4.70mH = 4.70*10^-3 H
f: frequency = ?
you solve the equation (1) for f and replace the values of the other parameters:
The frequency of the sinusoidal voltage is f
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³