1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
4 years ago
14

How will two positive charges react to one another?

Physics
1 answer:
Bogdan [553]4 years ago
3 0
<span>Each one will experience a force trying to push it away from the
other one.  If you don't hold onto them, they will move apart.</span>
You might be interested in
21 of 35 Review A friend of yours is loudly singing a single note at 401 HzHz while racing toward you at 23.0 m/sm/s on a day wh
Ipatiy [6.2K]

Answer:

The frequency of the sound note as heard = 429 Hz

Explanation:

The frequency of sound waves as heard from a distance for a sound wave coming towards one at v₀ m/s and whose real frequency is f₀ is given by

+f = f₀/[1 - (v₀/v)]

+f = frequency of sound as heard from the distance away = ?

f₀ = real frequency of sound = 401 Hz

v₀ = velocity at which the sound source is moving towards the reference point = 23.0 m/s

v = velocity of sound waves = 343 m/s

+f = 401/[1 - (23/343)]

+f = 429 Hz

5 0
4 years ago
)If a force of 5.00 N is needed to open a 90.0 cm wide door when applied at the edge opposite the hinges, what force must be app
masha68 [24]

Answer:

A force of 12.857 newtons must be applied to open the door.

Explanation:

In this case, a force is exerted on the door, a moment is performed and the door is opened. If moment remains constant, the force is inversely proportional to distance respect to axis of rotation passing through hinges. That is:

F \propto \frac{1}{r}

F = \frac{k}{r} (Eq. 1)

Where:

F - Force, measured in newtons.

k - Proportionality ratio, measured in newton-meters.

r - Distance respect to axis of rotation passing through hinges, measured in meters.

From (Eq. 1) we get the following relationship and clear the final force within:

F_{A}\cdot r_{A} = F_{B}\cdot r_{B}

F_{B}=\left(\frac{r_{A}}{r_{B}} \right)\cdot F_{A}(Eq. 2)

Where:

F_{A}, F_{B} - Initial and final forces, measured in newtons.

r_{A}, r_{B} - Initial and final distances, measured in meters.

If we know that F_{A} = 5\,N, r_{A} = 0.9\,m and r_{B} = 0.35\,m, then final force is:

F_{B}= \left(\frac{0.9\,m}{0.35\,m} \right)\cdot (5\,N)

F_{B} = 12.857\,N

A force of 12.857 newtons must be applied to open the door.

3 0
3 years ago
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.820 m. W
Vikentia [17]

Answer:

1.0752 kgm/s

Explanation:

Considering when the drop was dropped from rest from a height,

mass of the ball, m = 0.120 kg

height, h = - 1.25 m

the initial velocity, u = 0 m/s

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            V^{2} = U^{2} + 2gh

Substituting the values,

                             V^{2} = 0^{2} + 2(-9.8 m/s^{2})(-1.25 m)

                             V^{2} = 24.5 m/s

                             V = \sqrt{24.5} \ m/s

                             V = 4.95 \ m/s

                            V = ± 4.95 m/s

                            V = - 4.95 m/s

Since the ball is moving downward, the final velocity of the ball when it hits the floor is  V = - 4.95 m/s  

Considering when the ball rebounds from the floor,

assume the mass of the ball still remain, m = 0.120 kg

height, h = 0.820 m

the final velocity, v = 0 m/s  

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            V^{2} = U^{2} + 2gh

Substituting the values,

                            0^{2} = U^{2} + 2(-9.8 m/s^{2})(0.820 m)

                            0 = U^{2} - 16.072 m/s

                            U^{2} = 16.072 m/s

                            U = \sqrt{16.072} \ m/s

                           U = ± 4.01 m/s

                          U = + 4.01 m/s

Since the ball is moving upward, the initial velocity of the ball from the bounce from the floor is  U = + 4.01 m/s                        

From Newton's second law of motion, applied force is directly proportional to the rate of change in momentum.

                            F = \frac{mv - mu}{t}

                          F.t = m(v - u)

       ⇒      Impulse = Change in momentum

To calculate the impulse, the moment before the ball hits the ground will be the initial momentum while the moment the ball rebounces will be the final velocity,                        

          ∴          F.t = 0.120  kg(4.01  m/s - (-4.95  m/s) )

                      F.t = 0.120  kg(4.01  m/s + 4.95  m/s) )

                      F.t = 0.120  kg × 8.96  m/s

                      Impulse  = 1.0752 kgm/s

The impulse given to the ball by the floor is 1.0752 kgm/s

                             

6 0
3 years ago
Power Rating of a Resistor. The power rating of a resistor is the maximum power the resistor can safely dissipate without too gr
IgorLugansk [536]

(a) 273.9 V

The power rating of the resistor is given by

P=\frac{V^2}{R}

where

P is the power rating

V is the potential difference across the resistor

R is the resistance

If the maximum power rating is P=5.0 W, and the resistance of the resistor is R=15 k\Omega = 15000 \Omega, then we can find the maximum potential difference across the resistor by re-arranging the previous equation for V:

V=\sqrt{PR}=\sqrt{(5.0 W)(15000 \Omega)}=273.9 V

(b) 1.6 W

In this case, we have:

R=9.0 k\Omega = 9000 \Omega is the resistance of the resistor

V=120 V is the potential difference across the resistor

So we can find the power rating by using the same formula of part (a):

P=\frac{V^2}{R}=\frac{(120 V)^2}{9000 \Omega}=1.6 W

(c) Maximum voltage: 14.1 V; Rate of heat: 2.00 W and 3.00 W

Here we have two resistors of

R_1 = 100 \Omega\\R_2 = 150 \Omega

and each resistor has a power rating of

P = 2.00 W

So the greatest potential difference allowed in the first resistor is

V=\sqrt{PR_1}=\sqrt{(2.00 W)(100 \Omega)}=14.1 V

While the greatest potential difference allowed in the second resistor is

V=\sqrt{PR_2}=\sqrt{(2.00 W)(150 \Omega)}=17.3 V

So the greatest potential difference allowed not to overheat either of the resistor is 14.1 V.

In this condition, the power dissipated on the first resistor is 2.00 W, while the power dissipated on the second resistor is

P_2 = \frac{V^2}{R_2}=\frac{(14.1 V)^2}{150 \Omega}=1.33 W

And this corresponds to the rate of heat generated in the first resistor (2.00 W) and in the second resistor (1.33 W).

4 0
3 years ago
a roller coaster is at the top of a hill and rolls to the top of a lower hill.If mechanical energy is conserved,on the top of wh
pychu [463]
Hello!!

Here we have a simple matter of conservation of energy. ME=PE+KE.

At point A we have PE=mgh and KE=1/2mv^2. At point A all we have is PE since the coaster isn’t rolling yet. But by conservation of energy, we know that it will have enough energy to roll down and get to and equal height on another hill. Providing we are neglecting friction and drag and resistance forces which we are in this case. So we can conclude that the KE will be greater at Point B since ME=PE+KE and for ME to remain the same and we know the PE is less on lower hill, so we can conclude that KE on lower hill is greater to keep ME the same and have conservation of energy.

Hope this helps you understand the concept!! Any questions please just ask!! Thank you so much!!
7 0
4 years ago
Other questions:
  • if Steve throws the football 50 meters in 3 seconds, what is the average speed (velocity) of the football ?
    7·1 answer
  • A projectile is fired in such a way that its horizontal range is equal to 14.5 times its maximum height. what is the angle of pr
    6·1 answer
  • How many changes of state are shown?<br> 0<br> 1<br> 2<br> 3
    13·2 answers
  • An elephant travels 16metes to the left in 20s, what is the average velocity?​
    13·1 answer
  • When a weather map shows a wind symbol at 270 it indicates that the wind is coming from the?
    7·1 answer
  • An automobile engine develops a torque of 280 NxM at 3800 rpm. What is the power in watts and horsepower?
    14·1 answer
  • What is the momentum of a 0.1-kg mass moving with a speed of 5 m/s?
    12·1 answer
  • What is the correct answer?
    5·2 answers
  • Help fast
    7·1 answer
  • Solve a hollow steel shaft has an outside diameter of 100mm and inside diameter of 75 mm.the shaft is subjected to a pure torque
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!