I think that it is apparent magnitude
Answer:
a) a = 7.72 m / s², N = 19.9 N and b) F = 25.5 N
Explanation:
To solve this problem we will use Newton's second law, let's set a reference system with an axis parallel to the plane and gold perpendicular axis. Let's break down the weight (W)
sin52 = Wx / W
cos52 = Wy / W
Wx = W sin52
Wy = w cos 52
Let's write them equations
X axis
Wx = ma
Y Axis
N-Wy = 0
N = Wy
a) Let's calculate the acceleration
a = W sin52 / m = mg sin 52 / m
a = g sin 52
a = 9.8 sin52
a = 7.72 m / s²
The force of the ramp is normal
N = Wy = mg cos 52
N = 3.3 9.8 cos 52
N = 19.9 N
b) For the block to move at constant speed the sum of force on the axis must be zero,
F - Wx = 0
F = Wx
F = mg sin52
F = 3.3 9.8 sin 52
F = 25.5 N
Parallel to the plane and going up
Answer:

Explanation:
The volume flow rate of a fluid in a pipe is given by:

where
A is the cross-sectional area of the pipe
v is the speed of the fluid
In this problem, at the initial point we have
v = 0.84 m/s is the speed of the water
r = 0.21 m is the radius of the pipe, so the cross-sectional area is

So, the volume flow rate is

Answer:
734.215N
Explanation:
First we calculate the angle that corresponds to a 5% slope using the Tan-1 function

then we use the component that corresponds to the direction parallel to the road, additionally we must multiply by the gravity value to find the weight(g=9.81m/s^2)
Wx=M*g*sen(2.86)=1500kg*9.81*sen(2.86)=734.215N