Answer:
speed equals distance over time 50 divided by 5.
Well, the surface of still water has surface tension. If there isn't enough mass or weight to break the surface tension, the object will float.
a) 32.3 N
The force of gravity (also called weight) on an object is given by
W = mg
where
m is the mass of the object
g is the acceleration of gravity
For the ball in the problem,
m = 3.3 kg
g = 9.8 m/s^2
Substituting, we find the force of gravity on the ball:

b) 48.3 N
The force applied

The ball is kicked with this force, so we can assume that the kick is horizontal.
This means that the applied force and the weight are perpendicular to each other. Therefore, we can find the net force by using Pythagorean's theorem:

And substituting
W = 32.3 N
Fapp = 36 N
We find

c) 
The ball's acceleration can be found by using Newton's second law, which states that
F = ma
where
F is the net force on an object
m is its mass
a is its acceleration
For the ball in this problem,
m = 3.3 kg
F = 48.3 N
Solving the equation for a, we find

<h3><u>Answer</u> :</h3>
Initial velocity = zero (i.e., free fall)
Final velocity = 30m/s
Acceleration due to gravity = 10m/s²
For a body falling freely under the action of gravity, g is taken positive
◈ <u>First equation of kinenatics</u> :
⇒ v = u + gt
⇒ 30 = 0 + 10t
⇒ t = 30/10
⇒ <u>t = 3s</u>
Hence, object will attain a speed of 30m/s after 3s.