According to the law of conservation of momentum:

m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision
Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know.
m1 = 125 kg v1 = 12m/s v'1 = -12.5m/s
m2 = 235kg v2 = -13m/s v'2 = ?




Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation.




The velocity of the 2nd car after the collision is
0.03m/s.
Answer: Smoke is Abiotic because it is not a living thing.
Explanation: Hopefully this helps u. Have a great rest of your day. I hope this is the right answer
(a) The spring stiffness constant of the spring is 18,392 N/m.
(b) The time the car was in contact with the spring before it bounces off in the opposite direction is 0.23 s.
<h3>Kinetic energy of the car</h3>
The kinetic energy of the car is calculated as follows;
K.E = ¹/₂mv²
K.E = ¹/₂ x 950 x 22²
K.E = 229,900 J
<h3>Stiffness constant of the spring</h3>
The stiffness constant of the spring is calculated as follows;
K.E = U = ¹/₂kx²
k = 2U/x²
k = (2 x 229,900)/(5)²
k = 18,392 N/m
<h3>Force exerted on the spring</h3>
F = kx
F = 18,392 x 5
F = 91,960 N
<h3>Time of impact</h3>
F = mv/t
t = mv/F
t = (950 x 22)/(91960)
t = 0.23 s
Learn more about spring constant here: brainly.com/question/1968517
#SPJ4
Answer:
B. An arrow drawn on a bow, with the bow string pulled back.
Explanation:
Before answering this question it is necessary to know the conversion factors for temperatures.
<em>273 k = 0 ° C
</em>
To transform a temperature from Kelvin to ° C we use the following Formula
T ° C = T Kelvin - 273
<u>For 373 K</u>
373K -273 = 100 ° C
<em>373 Kelvin equals 100° C.
</em>
To transform a temperature from ° C to ° F we use the following formula:
(T° C x 9/5) + 32 = T ° F
Then:
<u>For 0 ° C
</u>
(0° C x 9/5) +32 = 32 ° F
<em>0° C equals 32 ° F.
</em>
<u>For 100° C
</u>
(100 ° C x 9/5) +32 = 212 F
<em>100 ° C equals 212 ° F.
</em>
Therefore, the correct option is the first:
373 Kelvin = 100 ° C = 212 ° F